论文题名(中文): | 放牧对草本沼泽湿地枯落物分解特征影响机制研究 |
作者: | |
学号: | 2021010769 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070501 |
学科名称: | 理学 - 地理学 - 自然地理学 |
学生类型: | 硕士 |
学位: | 理学硕士 |
学校: | 延边大学 |
院系: | |
专业: | |
第一导师姓名: | |
第一导师学校: | |
论文完成日期: | 2024-07-15 |
论文答辩日期: | 2024-07-30 |
论文题名(外文): | The effects of livestock grazing on litter decomposition in a marsh wetland |
关键词(中文): | |
关键词(外文): | Herbaceous marsh wetlands grazing deadfall decomposition deadfall substrate quality soil environmental factors |
论文文摘(中文): |
枯落物的分解是草本沼泽湿地生态系统中重要的生物地球化学过程,放牧是人类活动影响湿地环境的主要方式。因此,研究放牧对湿地枯落物分解特征的影响,对于理解湿地生态系统的物质循环及能量流动具有重要意义。本研究以吉林省东部图们江下游草本沼泽湿地为研究对象,分析不同放牧管理模式(天然无牧、放牧处理、围封禁牧)对湿地主要功能群的代表性植物(莎草科的灰脉薹草和禾本科的菰)分解特征的影响,并研究土壤环境因子和枯落物基质质量对枯落物分解的作用机制。 通过对天然无牧湿地、放牧处理湿地与围封禁牧湿地的对比分析,揭示了不同管理方式对枯落物分解速率、养分释放模式的显著差异。具体而言,天然无牧湿地表现出较高的枯落物分解速率,突显了自然状态对生态系统养分循环的积极作用。相比之下,放牧处理虽然在初期加速了枯落物分解,但在后期却明显落后于围封禁牧处理,反映了不同阶段湿地管理模式对枯落物分解速率的差异性影响。进一步比较灰脉薹草和菰的养分含量,发现灰脉薹草具有较高的全碳、全磷、木质素含量,而其分解时间却远大于菰,表明枯落物含有较高的纤维素和较低的木质素含量时,有利于加速分解过程。而土壤环境因子,如水位、土壤温度、土壤电导率和土壤养分,也对枯落物分解过程和质量残余量产生显著影响,进一步凸显了湿地管理模式和土壤环境对枯落物分解的综合影响。 利用结构方程模型,发现放牧主要会通过影响土壤的理化性质对枯落物的残余量产生间接的影响。比较灰脉薹草和菰的基质质量对枯落物质量残余的影响发现,全氮含量对枯落物残余量有负效应,纤维素含量则为正效应。但木质素含量对枯落物质量残余作用相反,灰脉薹草木质素含量对残余有负效应,菰木质素含量则是正效应,进一步解释了不同植物基质质量对分解过程的影响机制的差异。本研究揭示了管理措施、环境因素及不同植物基质质量对草本沼泽湿地枯落物分解的综合影响,为湿地生态系统的可持续管理和恢复提供了科学依据。 |
文摘(外文): |
The decomposition of litter is a crucial biogeochemical process in herbaceous marsh wetland ecosystems, and grazing is a primary way human activities influence wetland environments. Therefore, studying the effects of grazing on litter decomposition characteristics is vital for understanding the material cycling and energy flow in wetland ecosystems. This study focuses on the herbaceous marsh wetlands in the lower Tumen River in eastern Jilin Province, China, analyzing how different grazing management practices (natural grazing exclusion, grazing, and fenced grazing exclusion) affect the decomposition characteristics of representative plants from the wetland's major functional groups, specifically Carex grayana from the Cyperaceae family and Zizania latifolia from the Poaceae family. Additionally, it explores the mechanisms through which soil environmental factors and litter quality influence litter decomposition. By comparing natural grazing exclusion, grazed, and fenced grazing exclusion wetlands, this study reveals significant differences in litter decomposition rates and nutrient release patterns under different management practices. Specifically, the natural grazing exclusion wetlands exhibited a higher litter decomposition rate, highlighting the positive role of natural conditions in the nutrient cycling of ecosystems. In contrast, although grazing initially accelerated litter decomposition, it lagged behind fenced grazing exclusion in the later stages, reflecting the varying effects of wetland management practices on decomposition rates at different stages. A further comparison of the nutrient content between Carex grayana and Zizania latifolia shows that Carex grayana has higher total carbon, total phosphorus, and lignin content, yet a longer decomposition time than Zizania latifolia. This suggests that litter with higher cellulose and lower lignin content tends to decompose more rapidly. Moreover, soil environmental factors such as water level, soil temperature, soil conductivity, and soil nutrients significantly impact the litter decomposition process and residual mass, underscoring the combined effects of wetland management practices and soil environment on litter decomposition. Using structural equation modeling, the study found that grazing primarily impacts litter residual mass indirectly by altering soil physicochemical properties. Comparing the effects of substrate quality between Carex grayana and Zizania latifolia on litter residual mass, it was found that total nitrogen content has a negative effect on litter residual mass, while cellulose content has a positive effect. However, the effects of lignin content on litter residual mass differ between the two species: lignin content in Carex grayana has a negative effect on residual mass, while in Zizania latifolia, it has a positive effect. This further explains the differing mechanisms by which substrate quality affects the decomposition process in different plants. This study highlights the combined effects of management practices, environmental factors, and plant substrate quality on litter decomposition in herbaceous marsh wetlands, providing scientific evidence for the sustainable management and restoration of wetland ecosystems. |
参考文献: |
[1]Gingerich R T, Panaccione D G, Anderson J T. The role of fungi and invertebrates in litter decomposition in mitigated and reference wetlands[J]. Limnologica, 2015, 54: 23-32.
﹀
[2]Yu X, Ding S, Lin Q, et al. Wetland plant litter decomposition occurring during the freeze season under disparate flooded conditions[J]. Science of the total environment, 2020, 706: 136091. [3]Liu P, Wang Q, Bai J, et al. Decomposition and return of C and N of plant litters of Phragmites australis and Suaeda salsa in typical wetlands of the Yellow River Delta, China[J]. Procedia Environmental Sciences, 2010, 2: 1717-1726. [4]Zhan P, Liu Y, Wang H, et al. Plant litter decomposition in wetlands is closely associated with phyllospheric fungi as revealed by microbial community dynamics and co-occurrence network[J]. Science of the Total Environment, 2021, 753: 142194. [5]Trevathan-Tackett S M, Kepfer-Rojas S, Engelen A H, et al. Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale[J]. Science of the Total Environment, 2021, 782: 146819. [6]Chen M, Zhu X, Zhao C, et al. Rapid microbial community evolution in initial Carex litter decomposition stages in Bayinbuluk alpine wetland during the freeze–thaw period[J]. Ecological Indicators, 2021, 121: 107180. [7]Peng Y, Zhou C, Jin Q, et al. Tidal variation and litter decomposition co-affect carbon emissions in estuarine wetlands[J]. Science of The Total Environment, 2022, 839: 156357. [8]Ding Y, Wang D, Zhao G, et al. The contribution of wetland plant litter to soil carbon pool: Decomposition rates and priming effects[J]. Environmental Research, 2023, 224: 115575. [9]Meng Y, Hui D, Huangfu C. Site conditions interact with litter quality to affect home-field advantage and rhizosphere effect of litter decomposition in a subtropical wetland ecosystem[J]. Science of the Total Environment, 2020, 749: 141442. [10]Yu X, Guo J, Lu X, et al. Comparative analyses of wetland plant biomass accumulation and litter decomposition subject to in situ warming and nitrogen addition[J]. Science of the total environment, 2019, 691: 769-778. [11]Wang W, Wang C, Sardans J, et al. Storage and release of nutrients during litter decomposition for native and invasive species under different flooding intensities in a Chinese wetland[J]. Aquatic botany, 2018, 149: 5-16. [12]Tao B, Zhang B, Dong J, et al. Antagonistic effect of nitrogen additions and warming on litter decomposition in the coastal wetland of the Yellow River Delta, China[J]. Ecological engineering, 2019, 131: 1-8. [13]Tarda A S, Saparrat M C N, Gómez N. Assemblage of dematiaceous and Ingoldian fungi associated with leaf litter of decomposing Typha latifolia L.(Typhaceae) in riverine wetlands of the Pampean plain (Argentina) exposed to different water quality[J]. Journal of environmental management, 2019, 250: 109409. [14]Jiang A, Mipam T D, Jing L, et al. Large herbivore grazing accelerates litter decomposition in terrestrial ecosystems[J]. Science of The Total Environment, 2024: 171288. [15]Su Y, Dong K, Wang C, et al. Grazing promoted plant litter decomposition and nutrient release: A meta-analysis[J]. Agriculture, Ecosystems & Environment, 2022, 337: 108051. [16]Li Y, Gong J, Zhang Z, et al. Grazing directly or indirectly affect shoot and root litter decomposition in different decomposition stage by changing soil properties[J]. Catena, 2022, 209: 105803. [17]Tang H, Nolte S, Jensen K, et al. Grazing mediates soil microbial activity and litter decomposition in salt marshes[J]. Science of the total environment, 2020, 720: 137559. [18]Song XuXin S X X, Wang Ling W L, Zhao Xuan Z X, et al. Sheep grazing and local community diversity interact to control litter decomposition of dominant species in grassland ecosystem[J]. 2017. [19]Duan H, Wang L, Zhang Y, et al. Variable decomposition of two plant litters and their effects on the carbon sequestration ability of wetland soil in the Yangtze River estuary[J]. Geoderma, 2018, 319: 230-238. [20]Haitao W, Xianguo L, Qing Y, et al. Early-stage litter decomposition and its influencing factors in the wetland of the Sanjiang Plain, China[J]. Acta Ecologica Sinica, 2007, 27(10): 4027-4035. [21]Yuan X, Niu D, Wang Y, et al. Litter decomposition in fenced and grazed grasslands: A test of the home-field advantage hypothesis[J]. Geoderma, 2019, 354: 113876. [22]Kooch Y, Moghimian N, Wirth S, et al. Effects of grazing management on leaf litter decomposition and soil microbial activities in northern Iranian rangeland[J]. Geoderma, 2020, 361: 114100. [23]Santalahti M, Sun H, Sietiö O M, et al. Reindeer grazing alter soil fungal community structure and litter decomposition related enzyme activities in boreal coniferous forests in Finnish Lapland[J]. Applied Soil Ecology, 2018, 132: 74-82. [24]Schaller J, Brackhage C. Invertebrate grazers affect metal/metalloid fixation during litter decomposition[J]. Chemosphere, 2015, 119: 394-399. [25]Lindsay E A, Cunningham S A. Livestock grazing exclusion and microhabitat variation affect invertebrates and litter decomposition rates in woodland remnants[J]. Forest Ecology and Management, 2009, 258(2): 178-187. [26]Mougin E, Seena D L, Rambal S, et al. A regional Sahelian grassland model to be coupled with multispectral satellite data. I: Model description and validation[J]. Remote Sensing of Environment, 1995, 52(3): 181-193. [27]曹富强, 刘朝晖, 刘敏, 等. 森林凋落物及其分解过程的研究进展[J]. 广西农业科学, 2010, 41(7): 693-697. [28]Brandt L A, King J Y, Hobbie S E, et al. The role of photodegradation in surface litter decomposition across a grassland ecosystem precipitation gradient[J]. Ecosystems, 2010, 13: 765-781. [29]Chapin F S, Matson P A, Mooney H A, et al. Principles of terrestrial ecosystem ecology[J]. 2002. [30]Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environmental Reviews, 1997, 5(1): 1-25. [31]杨继松, 刘景双, 于君宝, 等. 三江平原小叶章湿地枯落物分解及主要元素变化动态[J]. 生态学杂志, 2006 (6): 597-602. [32]邱尔发, 陈卓梅, 郑郁善, 等. 麻竹山地笋用林凋落物发生, 分解及养分归还动态[J]. 应用生态学报, 2005, 16(5): 811-814. [33]宋旭昕. 放牧家畜与植物多样性互作对草地枯落物分解的作用及调控机制[D]. 东北师范大学, 2018. [34]Aerts R, de Caluwe H. Nutritional and plant‐mediated controls on leaf litter decomposition of Carex species[J]. Ecology, 1997, 78(1): 244-260. [35]牛小云. 日本落叶松枯落物分解过程及其生物学特征研究[D]. 北京: 中国林业科学研究院, 2015. [36]Chapin F S, Matson P A, Mooney H A, et al. Principles of terrestrial ecosystem ecology[J]. 2002. [37]卜涛, 张水奎, 宋新章, 等. 几个环境因子对凋落物分解的影响[J]. 浙江农林大学学报, 2013, 30(5): 740-747. [38]Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems[J]. Environmental Reviews, 1997, 5(1): 1-25. [39]万红云. 降水变化和氮沉降对宁夏荒漠草原枯落物分解的影响[D]. 宁夏大学, 2022. [40]向云. 黄土丘陵区草地枯落物分解特征及其对土壤性质的影响[D]. 陕西 杨凌: 西北农林科技大学, 2018. [41]Guo Y, Boughton E H, Liao H L, et al. Direct and indirect pathways of land management effects on wetland plant litter decomposition[J]. Science of the Total Environment, 2023, 854: 158789. [42]Ren Y, Qi Y, Wang X, et al. Effects of microplastics on litter decomposition in wetland soil[J]. Environmental Pollution, 2024, 343: 123145. [43]Swift M J, Heal O W, Anderson J M, et al. Decomposition in terrestrial ecosystems[M]. Univ of California Press, 1979. [44]Arunachalam A, Pandey H N, Tripathi R S, et al. Fine root decomposition and nutrient mineralization patterns in a subtropical humid forest following tree cutting[J]. Forest Ecology and Management, 1996, 86(1-3): 141-150. [45]Berg B, Ekbohm G. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest. VII[J]. Canadian journal of Botany, 1991, 69(7): 1449-1456. [46]Vichkovitten T, Holmer M. Contribution of plant carbohydrates to sedimentary carbon mineralization[J]. Organic Geochemistry, 2004, 35(9): 1053-1066. [47]Zhang W, Gao D, Chen Z, et al. Substrate quality and soil environmental conditions predict litter decomposition and drive soil nutrient dynamics following afforestation on the Loess Plateau of China[J]. Geoderma, 2018, 325: 152-161. [48]Wang S, Zhou Q, Hu X, et al. Polyethylene microplastic-induced microbial shifts affected greenhouse gas emissions during litter decomposition in coastal wetland sediments[J]. Water Research, 2024, 251: 121167. [49]Xi L, Chen S, Bian H, et al. Organic carbon release from litter decomposition of woody and herbaceous plants in the Dongting Lake wetlands: A comparative study[J]. Ecohydrology & Hydrobiology, 2023. [50]Yin M, Liu L, Wu Y, et al. Effects of litter species and genetic diversity on plant litter decomposition in coastal wetland[J]. Ecological Indicators, 2022, 144: 109439. [51]Ferreira V, Encalada A C, Graça M A S. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams[J]. Freshwater Science, 2012, 31(3): 945-962. [52]Aerts R, de Caluwe H. Nutritional and plant‐mediated controls on leaf litter decomposition of Carex species[J]. Ecology, 1997, 78(1): 244-260. [53]Orrego M, Katayama A, Hasegawa M, et al. Dead bamboo culms promote litter mass, carbon and nitrogen loss, but do not modulate the effect of soil fauna on litter decomposition[J]. European Journal of Soil Biology, 2023, 117: 103493. [54]Zhang Y, Gan Z, Li R, et al. Litter production rates and soil moisture influences interannual variability in litter respiration in the semi-arid Loess Plateau, China[J]. Journal of Arid Environments, 2016, 125: 43-51. [55]Grosso F, Bååth E, De Nicola F. Bacterial and fungal growth on different plant litter in Mediterranean soils: effects of C/N ratio and soil pH[J]. Applied Soil Ecology, 2016, 108: 1-7. [56]Powers J S, Montgomery R A, Adair E C, et al. Decomposition in tropical forests: a pan‐tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient[J]. Journal of Ecology, 2009, 97(4): 801-811. [57]刘霞, 周涛, 吴昊, 等. 中国森林凋落物分解速率的空间格局及主控因子: 基于最优线性混合模型[J]. 北京师范大学学报: 自然科学版, 2018, 54(4): 553-560. [58]黄锦学, 黄李梅, 林智超, 等. 中国森林凋落物分解速率影响因素分析[J]. 亚热带资源与环境学报, 2010, 5(3): 56-63. [59]Wang Y, Li F Y, Song X, et al. Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: Soil moisture, not home-field advantage, plays a dominant role[J]. Agriculture, ecosystems & environment, 2020, 303: 107119. [60]曾曙才, 苏志尧, 古炎坤, 等. 广州白云山风景名胜区主要林分类型凋落物的研究[J]. 应用生态学报, 2003, 14(1): 154-156. [61]Kähkönen M A, Hakulinen R. Hydrolytic enzyme activities, carbon dioxide production and the growth of litter degrading fungi in different soil layers in a coniferous forest in Northern Finland[J]. European journal of soil biology, 2011, 47(2): 108-113. [62]McLauchlan K K. Effects of soil texture on soil carbon and nitrogen dynamics after cessation of agriculture[J]. Geoderma, 2006, 136(1-2): 289-299. [63]王进. 土壤基质与凋落物分解互作效应的研究[D]. 武汉: 华中农业大学 ꎬ, 2014. [64]Qualls R G, Richardson C J. Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms[J]. Soil Science Society of America Journal, 2000, 64(2): 799-808. [65]Keeler B L, Hobbie S E, Kellogg L E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition[J]. Ecosystems, 2009, 12: 1-15. [66]Knorr M, Frey S D, Curtis P S. Nitrogen additions and litter decomposition: A meta‐analysis[J]. Ecology, 2005, 86(12): 3252-3257. [67]Pastor J, Post W M. Response of northern forests to CO2-induced climate change[J]. Nature, 1988, 334(6177): 55-58. [68]Neilson R, Robinson D, Marriott C A, et al. Above-ground grazing affects floristic composition and modifies soil trophic interactions[J]. Soil Biology and Biochemistry, 2002, 34(10): 1507-1512. [69]Reynolds H L, Packer A, Bever J D, et al. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics[J]. Ecology, 2003, 84(9): 2281-2291. [70]Ritchie M E, Tilman D, Knops J M H. Herbivore effects on plant and nitrogen dynamics in oak savanna[J]. Ecology, 1998, 79(1): 165-177. [71]Wood J L, Liu W, Tang C, et al. Microorganisms in heavy metal bioremediation: strategies for applying microbial-community engineering to remediate soils[J]. AIMS Bioengineering, 2016, 3(2): 211-229. [72]Hirsch P R, Jhurreea D, Williams J K, et al. Soil resilience and recovery: rapid community responses to management changes[J]. Plant and Soil, 2017, 412: 283-297. [73]Palmer S C F, Hester A J, Elston D A, et al. The perils of having tasty neighbors: grazing impacts of large herbivores at vegetation boundaries[J]. Ecology, 2003, 84(11): 2877-2890. [74]Olofsson J, Oksanen L. Role of litter decomposition for the increased primary production in areas heavily grazed by reindeer: a litterbag experiment[J]. Oikos, 2002, 96(3): 507-515. [75]YANG L L, GONG J R, WANG Y H, et al. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2016, 40(8): 748. [76]Lunt I D, Eldridge D J, Morgan J W, et al. A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia[J]. Australian Journal of Botany, 2007, 55(4): 401-415. [77]左万庆, 王玉辉, 王风玉, 等. 围栏封育措施对退化羊草草原植物群落特征影响研究[J]. 草业学报, 2009, 18(3): 12. [78]陈芙蓉, 程积民, 于鲁宁, 等. 封育和放牧对黄土高原典型草原生物量的影响[J]. 草业科学, 2011, 28(6): 1079-1084. [79]杨鹏年, 李希来, 李成一, 等. 黄河源区斑块化退化高寒草甸土壤微生物多样性对长期封育的响应[J]. 环境科学, 2023, 44(4): 2293-2303. [80]Eldridge D J, Westoby M, Holbrook K G. Soil-surface characteristics, microtopography and proximity to mature shrubs: effects on survival of several cohorts of Atriplex vesicaria seedlings[J]. The Journal of Ecology, 1991: 357-364. [81]YANG L L, GONG J R, WANG Y H, et al. Effects of grazing intensity and grazing exclusion on litter decomposition in the temperate steppe of Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2016, 40(8): 748. [82]Zuo W Q, Wang Y H, Wang F Y, et al. Effects of enclosure on the community characteristics of Leymus chinensis in degenerated steppe[J]. Acta Prataculturae Sinica, 2009, 18(3): 12-19. [83]魏晓凤. 松嫩草地不同放牧强度下植物物种枯落物分解的变化规律研究[J]. 长春: 东北师范大学硕士学位论文, 2013. [84]陈蔚, 王维东, 蒋嘉瑜. 半干旱草地植物枯落物碳, 氮和磷元素释放对放牧和封育管理的响应[J]. 生态学报, 2022, 42(11): 4401-4414. [85]陈蔚, 刘任涛, 张安宁, 等. 半干旱草地不同植物枯落物分解对放牧和封育的响应[J]. 生态学报, 2021, 41(14): 5725-5736. [86]Lv G, Cui G, Wang X, et al. Signatures of Wetland Impact: Spatial Distribution of Forest Aboveground Biomass in Tumen River Basin[J]. Remote Sensing, 2021, 13(15): 3009. [87]Guo R. The Tumen River Delta: development and the environment[J]. Developments in Environmental Science, 2012, 10: 307-323. [88]Liu Y, Jin R, Zhu W. Conversion of Natural Wetland to Farmland in the Tumen River Basin: Human and Environmental Factors[J]. Remote Sensing, 2021, 13(17): 3498. [89]Yu H, Zhu W, Jin R. Future soil erosion assessment based on changing land cover and different climate change scenarios in a transboundary river basin[J]. International Journal of Digital Earth, 2024, 17(1): 2301434. [90]汤钰琦,尚钇君,朱卫红等.敬信湿地弃耕稻田恢复演替年限对植物群落多样性的影响[J].生态与农村环境学报,2023,39(09):1180-1187.DOI:10.19741/j.issn.1673-4831.2022.1101. [91]Zhang Q, Zhang G, Yu X, et al. Effect of ground water level on the release of carbon, nitrogen and phosphorus during decomposition of Carex. cinerascens Kükenth in the typical seasonal floodplain in dry season[J]. Journal of freshwater ecology, 2019, 34(1): 305-322. [92]Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7081): 165-173. [93]Thoms C, Gattinger A, Jacob M, et al. Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest[J]. Soil Biology and Biochemistry, 2010, 42(9): 1558-1565. [94]Johnson D, Moore L, Green S, et al. Direct and indirect effects of ammonia, ammonium and nitrate on phosphatase activity and carbon fluxes from decomposing litter in peatland[J]. Environmental Pollution, 2010, 158(10): 3157-3163. [95]Taboada M A, Rubio G, Chaneton E J. Grazing impacts on soil physical, chemical, and ecological properties in forage production systems[J]. Soil management: building a stable base for agriculture, 2011: 301-320. [96]Li Y, Gong J, Zhang Z, et al. Grazing directly or indirectly affect shoot and root litter decomposition in different decomposition stage by changing soil properties[J]. Catena, 2022, 209: 105803. |
开放日期: | 2024-08-18 |