- 无标题文档
查看论文信息

题名:

 基于萘和联苯单元的刚-柔两亲分子的合成及形貌调控    

作者:

 谢佳明    

学号:

 2021010054    

保密级别:

 保密3年内公开    

语种:

 chi    

学科代码:

 070300    

学科:

 理学 - 化学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 延边大学    

院系:

 理学院    

专业:

 化学    

导师姓名:

 金龙一    导师信息

导师单位:

 延边大学    

完成日期:

 2024-06-01    

答辩日期:

 2024-08-09    

外文题名:

 Synthesis and morphology control of rigid-flexible amphiphilic molecules based on naphthalene and biphenyl units    

关键词:

 刚-柔嵌段分子 形貌 自组装 联苯    

外文关键词:

 Rigid-flexible block molecules Morphology Self-assembly Naphthaline Biphenyl    

摘要:

刚-柔嵌段两亲性分子因其分子固有的微相分离作用,在本体及溶液中极易形成分子聚集体,应用于分子识别、传感及功能软材料等领域。本文引入萘单元作为电子供体,萘二酰亚胺(NDI)单元作为电子受体,设计并合成了刚-柔嵌段两亲性分子NAPH-CHO、NDI-OH。利用核磁共振氢谱(1H NMR)、质谱(MALDI-TOF-MS)、荧光发射光谱(FL)、紫外吸收光谱(UV)、原子力显微镜(AFM)、透射电子显微镜(TEM)等手段分别分析了两种化合物的结构和在水与四氢呋喃的混合体系中的分子的自组装行为及其基于电荷转移相互作用力驱动的化合物的共组装行为。NAPH-CHO和NDI-OH在溶液体系中受到非共价作用力协同驱动分别自组装成纳米片装结构,而二者混合后产生的供体受体相互作用促使其组装成多层片状结构。此外,化合物NAPH-CHO末端的醛基能够与氨基化合物之间形成亚胺键得到化合物PN和BN,利用红外光谱(IR)对亚胺键的形成进行表征,分析不同pH反应体系对其缩合反应的影响及其产物的自组装行为,考察结构变化对电荷转移能力以及形貌的影响。

基于联苯单元设计并合成了三种AB型刚-柔两亲分子CP3、CP4和AP4,和三种ABA型刚-柔两亲分子CP51、CP52、CP53。利用小角x射线散射图谱(SAXS)、差示量热扫描曲线图(DSC)、偏光显微镜(POM)等手段探究了化合物CP4的液晶性质。结果表明化合物CP3由π-π堆积作用和亲疏水作用在水溶液中聚集自组装成超分子纳米片状结构,由于化合物CP4在化合物CP3的基础上增加一个苯单元,使得疏水部分增加,形成了尺寸更大的纳米片状;化合物AP4与CP4具有相同的刚性骨架,而柔性链部分缺少侧链甲基,使化合物AP4的自组装排列结构更紧密,形成了较化合物CP4尺寸更大的超分子纳米片状聚集体。化合物CP51、CP52和CP53具有相同刚性骨架,其中化合物CP51和CP52具有相同的柔性链,但共价连接的柔性部分的数量不同导致化合物CP51形成超分子纳米片状结构,而柔性部分多的化合物CP52组装为纳米纤维结构,化合物中柔性部分横截面积最大的CP53组装成纳米线结构。

外摘要要:

Due to its inherent microphase separation effect, rigid flexible amphiphilic molecules are prone to form molecular aggregates in bulk and solution, and are applied in fields, such as molecular recognition, sensing, and functional soft materials. This thesis, two types of rod-coil molecules were designed and synthesized by introducing naphthalene unit as electron donor (NAPH-CHO) and NDI unit as electron acceptor (NDI-OH). The self-assembly behavior of the two compounds in a mixed system of H2O/THF (v/v=1:9) and the co-assembly behavior of the compounds driven by charge transfer interactions in H2O and THF solution were studied using nuclear magnetic resonance hydrogen spectroscopy (1H NMR), mass spectrometry (MALDI-TOF-MS), fluorescence emission spectroscopy (FL), ultraviolet absorption spectroscopy (UV), atomic force microscopy (AFM), and transmission electron microscopy (TEM), respectively. NAPH-CHO and NDI-OH are synergistically driven by non-covalent forces in a solution system to self-assemble into nanosheet structures, respectively. The donor acceptor interaction generated by their mixture promotes the assembly of the mixture into multi-layer sheet-like structures. In addition, the aldehyde group at the end of compound NAPH-CHO can form imine bonds with amino compounds to obtain compounds PN and BN. The formation of imine bonds was characterized by infrared spectroscopy (IR), and the effects of different pH reaction systems on the condensation reaction and the self-assembly behavior of the products were analyzed, and the effects of structural changes on the charge transfer ability and morphology were investigated.

Three AB type rigid flexible amphiphilic molecules CP3, CP4, and AP4, as well as three ABA type rigid flexible amphiphilic molecules CP51, CP52, and CP53, were designed and synthesized based on the biphenyl unit. The liquid crystal properties of the compounds CP4 were investigated using small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), polarizing microscopy (POM), and other methods. The results showed that compound CP3 aggregates and self-assembles into supramolecular nanosheets in aqueous solution through π-π stacking and hydrophobic interactions. Due to the presence of one more benzene unit in compound CP4 compared to compound CP3, the hydrophobic portion increases, resulting in the formation of larger nanosheets. Compound AP4 and CP4 have the same rigid skeleton, while the flexible chain lacks side chain groups, resulting in a more compact self-assembly structure of compound AP4, forming larger supramolecular nanosheets than compound CP4. Compounds CP51, CP52, and CP53 have the same rigid skeleton, among which compounds CP51 and CP52 have the same flexible chain, but the number of covalently connected flexible parts is different, resulting in the formation of supramolecular nanosheets in compound CP51. Compound CP52 with more flexible parts is assembled into a nanofiber structure, while compound CP53 with the largest cross-sectional area of the flexible part is assembled into a nanowire structure.

参考文献:
[1]Lehn J M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture)[J]. Angewandte Chemie International Edition in English, 1988, 27(1): 89-112.
[2]Lehn J M. Supramolecular chemistry: Where from? Where to?[J]. Chemical Society Reviews, 2017, 46(9): 2378-2379.
[3]Kolesnichenko I V, Anslyn E V. Practical applications of supramolecular chemistry[J]. Chemical Society Reviews, 2017, 46(9): 2385-2390.
[4]Berl V, Krische M J, Huc I, et al. Template‐induced and molecular recognition directed hierarchical generation of supramolecular assemblies from molecular strands[J]. Chemistry–A European Journal, 2000, 6(11): 1938-1946.
[5]Peng Z, Zhong H. Synthesis and properties of tannic acid-based hydrogels[J]. Journal of Macromolecular Science, 2014, 53(2): 233-242.
[6]Liu Y. Supramolecular basketry[J]. Nature chemistry, 2017, 9(11): 1037-1038.
[7]Liu M, Zhang L, Wang T. Supramolecular chirality in self-assembled systems[J]. Chemical reviews, 2015, 115(15): 7304-7397.
[8]Whitesides G M, Grzybowski B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418-2421.
[9]Decato D A, Sun J, Boller M R, et al. Pushing the limits of the hydrogen bond enhanced halogen bond—The case of the C–H hydrogen bond[J]. Chemical Science, 2022, 13(37): 11156-11162.
[10]Karas L J, Wu C H, Das R, et al. Hydrogen bond design principles[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2020, 10(6): e1477.
[11]Robertson C C, Wright J S, Carrington E J, et al. Hydrogen bonding vs. halogen bonding: the solvent decides[J]. Chemical science, 2017, 8(8): 5392-5398.
[12]Sakai N, Mareda J, Matile S. Rigid-rod molecules in biomembrane models: From hydrogen-bonded chains to synthetic multifunctional pores[J]. Accounts of chemical research, 2005, 38(2): 79-87.
[13]Sanyal U, Yuk S F, Koh K, et al. Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase[J]. Angewandte Chemie International Edition, 2021, 133(1): 294-300.
[14]Dong J, Davis A P. Molecular recognition mediated by hydrogen bonding in aqueous media[J]. Angewandte Chemie International Edition, 2021, 133(15): 8113-8126.
[15]Cheng S, Patil S, Cheng S. Hydrogen bonding exchange and supramolecular dynamics of monohydroxy alcohols[J]. Physical Review Letters, 2024, 132(5): 058201.
[16]Sham K C, Yee C C, Pan Y, et al. Acid-induced formation of hydrogen-bonded double helix based on chiral polyphenyl-bridged bis (2, 2′-bipyridine) ligands[J]. RSC Advances, 2014, 4(28): 14513-14526.
[17]Berrocal J A, Di M F, García-Iglesias M, et al. Consequences of conformational flexibility in hydrogen-bond-driven self-assembly processes[J]. Chemical communications, 2016, 52(72): 10870-10873.
[18]Hirschberg J H K K, Brunsveld L, Ramzi A, et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs[J]. Nature, 2000, 407(6801): 167-170.
[19]Uchida J, Yoshio M, Kato T. Self-healing and shape memory functions exhibited by supramolecular liquid-crystalline networks formed by combination of hydrogen bonding interactions and coordination bonding[J]. Chemical Science, 2021, 12(17): 6091-6098.
[20]Wang X, Sangtarash S, Lamantia A, et al. Thermoelectric properties of organic thin films enhanced by π–π stacking[J]. Journal of Physics: Energy, 2022, 4(2): 024002.
[21]Deng J H, Luo J, Mao Y L, et al. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks[J]. Science Advances, 2020, 6(2): 9973-9976.
[22]Zhang F, Pei G, Huang B, et al. Exploring release mechanisms by disrupting π–π stacking regions in stable micelles[J]. Journal of Materials Chemistry B, 2023, 11(38): 9246-9259.
[23]Zhang T, Vanderghinste J, Guidetti A, et al. Π–Π stacking complex induces three‐component coupling reactions to synthesize functionalized amines[J]. Angewandte Chemie International Edition, 2022, 134(49): e202212083.
[24]Li Y, Zhao C, Wang R, et al. In situ monitoring of transmetallation in electric potential-promoted oxidative coupling in a single-molecule junction[J]. CCS Chemistry, 2023, 5(1): 191-199.
[25]马玉东. 有机电荷转移复合物的制备及其性能研究[D]. 南京邮电大学, 2021.
[26]Yu S, Yang Y, Chen T, et al. Donor–acceptor interaction-driven self-assembly of amphiphilic rod–coil molecules into supramolecular nanoassemblies[J]. Nanoscale, 2017, 9(45): 17975-17982.
[27]Yan Y, Wang H, Li B, et al. Smart self‐assemblies based on a surfactant‐encapsulated photoresponsive polyoxometalate complex[J]. Angewandte Chemie International Edition, 2010, 48(49): 9233-9236.
[28]Dergham M, Lin S, Geng J. Supramolecular self‐assembly in living cells[J]. Angewandte Chemie International Edition, 2022, 134(18): e202114267.
[29]Wang C, Guo Y, Wang Z, et al. Superamphiphiles based on charge transfer complex: Controllable hierarchical self-assembly of nanoribbons[J]. Langmuir, 2010, 26(18): 14509-14511.
[30]Zentner C A, Anson F, Thayumanavan S, et al. Dynamic imine chemistry at complex double emulsion interfaces[J]. Journal of the American Chemical Society, 2019, 141(45): 18048-18055.
[31]Ben-Amotz D. Water-mediated hydrophobic interactions[J]. Annual review of physical chemistry, 2016, 67: 617-638.
[32]Gunasekara R W, Zhao Y. Intrinsic hydrophobicity versus intraguest interactions in hydrophobically driven molecular recognition in water[J]. Organic letters, 2017, 19(16): 4159-4162.
[33]Sato T, Sasaki T, Ohnuki J, et al. Hydrophobic surface enhances electrostatic interaction in water[J]. Physical review letters, 2018, 121(20): 206002.
[34]Tan S F, Raj S, Bisht G, et al. Nanoparticle interactions guided by shape‐dependent hydrophobic forces[J]. Advanced materials, 2018, 30(16): 1707077.
[35]Xie L, Yang D, Lu Q, et al. Role of molecular architecture in the modulation of hydrophobic interactions[J]. Current opinion in colloid & interface science, 2020, 47: 58-69.
[36]Cui X, Liu J, Xie L, et al. Interfacial ion specificity modulates hydrophobic interaction[J]. Journal of Colloid and Interface Science, 2020, 578: 135-145.
[37]Lindman B, Medronho B, Alves L, et al. Hydrophobic interactions control the self-assembly of DNA and cellulose[J]. Quarterly Reviews of Biophysics, 2021, 54: e3.
[38]Liu J, Cui X, Xie L, et al. Probing effects of molecular-level heterogeneity of surface hydrophobicity on hydrophobic interactions in air/water/solid systems[J]. Journal of colloid and interface science, 2019, 557: 438-449.
[39]Chen L, Jin Z, Feng W, et al. A hyperelastic hydrogel with an ultralarge reversible biaxial strain[J]. Science, 2024, 383(6690): 1455-1461.
[40]Tsai W W, Li L, Cui H, et al. Self-assembly of amphiphiles with terthiophene and tripeptide segments into helical nanostructures[J]. Tetrahedron, 2008, 64(36): 8504-8514.
[41]Barclay T G, Constantopoulos K, Matisons J. Nanotubes self-assembled from amphiphilic molecules via helical intermediates[J]. Chemical Reviews, 2014, 114(20): 10217-10291.
[42]Sorrenti A, Illa O, Ortuño R M. Amphiphiles in aqueous solution: well beyond a soap bubble[J]. Chemical Society Reviews, 2013, 42(21): 8200-8219.
[43]Shimizu T, Masuda M, Minamikawa H. Supramolecular nanotube architectures based on amphiphilic molecules[J]. Chemical Reviews, 2005, 105(4): 1401-1444.
[44]Xu F, Zhang J, Zhang P, et al. “Rod–coil” copolymers get self-assembled in solution[J]. Materials Chemistry Frontiers, 2019, 3(11): 2283-2307.
[45]Chen H, Fan Y, Zhang N, et al. Fluorescent polymer cubosomes and hexosomes with aggregation-induced emission[J]. Chemical Science, 2021, 12(15): 5495-5504.
[46]Smith D K. Lost in translation? Chirality effects in the self-assembly of nanostructured gel-phase materials[J]. Chemical Society Reviews, 2009, 38(3): 684-694.
[47]Hoeben F J M, Jonkheijm P, Meijer E W, et al. About supramolecular assemblies of π-conjugated systems[J]. Chemical reviews, 2005, 105(4): 1491-1546.
[48]Yashima E, Maeda K, Iida H, et al. Helical polymers: synthesis, structures, and functions[J]. Chemical reviews, 2009, 109(11): 6102-6211.
[49]Liu N, Gao R T, Wu Z Q. Helix-induced asymmetric self-assembly of π-conjugated block copolymers: From controlled syntheses to distinct properties[J]. Accounts of Chemical Research, 2023, 56(21): 2954-2967.
[50]Modzelewski T, Wonderling N M, Allcock H R. Polyphosphazene elastomers containing interdigitated oligo-p-phenyleneoxy side groups: synthesis, mechanical properties, and x-ray scattering studies[J]. Macromolecules, 2015, 48(14): 4882-4890.
[51]Schmidt H C, Guo X, Richard P U, et al. Mixed‐valent molecular triple deckers[J]. Angewandte Chemie International Edition, 2018, 57(36): 11688-11691.
[52]Liu D, Zhang K, Zhong Y, et al. An effective strategy for controlling the morphology of high-performance non-fullerene polymer solar cells without post-treatment: employing bare rigid aryl rings as lever arms in new asymmetric benzodithiophene[J]. Journal of Materials Chemistry A, 2018, 6(37): 18125-18132.
[53]Chakraborty D, Dinda S, Chowdhury M, et al. Morphological transformation of self-assemblies by tuning hydrophobic segment of small amphiphiles[J]. Journal of colloid and interface science, 2019, 539: 414-424.
[54]Lin F, Liang R, Qi Q, et al. Construction of vesicles, micro/nanorods and ultralong nanotubes through the self‐assembly of non‐classical amphiphiles with rigid conformation[J]. Chinese Journal of Chemistry, 2017, 35(4): 429-434.
开放日期:

 2027-08-17    

无标题文档