题名: | Salen配合物衍生金属硫化物的制各及其储钠性能研究 |
作者: | |
学号: | 2021010058 |
保密级别: | 保密3年内公开 |
语种: | chi |
学科代码: | 070301 |
学科: | 理学 - 化学 - 无机化学 |
学生类型: | 硕士 |
学位: | 理学硕士 |
学校: | 延边大学 |
院系: | |
专业: | |
导师姓名: | |
导师单位: | |
完成日期: | 2024-08-12 |
答辩日期: | 2024-08-09 |
外文题名: | Synthesis of Salen Complexes-derived Metal Sulfides and their Sodium Storage Performence |
关键词: | |
外文关键词: | Sodium-ion batteries anode metal sulfides (salen) complexes nitrogen-doped carbon |
摘要: |
钠离子电池由于其成本低、工作温度范围广、环境友好、理论容量高等优点,是最有潜力代替锂离子电池的下一代电池,尤其是动力电池方面的应用前景开阔。然而,由于锂离子电池中的石墨负极在钠离子电池中不适合使用,需要开发新型负极材料。目前钠离子电池负极材料的研究方向主要有碳基材料、合金基材料、转化型材料等。碳基材料由于层间距小于钠离子电池嵌入能量阈值,不适合用作钠离子电池负极。基于转化反应的转化型材料中硫化亚铁和硫化亚锡是两种极具发展潜力的金属硫化物负极材料。硫化亚铁和硫化亚锡具有廉价易得、比容量高的优点,但是存在充放电过程中体积变化大、导电率低等问题,阻碍了硫化亚铁和硫化亚锡的实际应用。研究表明设计纳米化结构和进行碳包覆能有效解决以上问题。在本论文中,采用单步硫化法,以Fe(salen)和Sn(salen)配合物为前驱体,成功制备了金属硫化物(FeS、SnS)与碳材料的纳米复合材料。为了解决这些材料自身存在的缺陷,设计新型纳米结构来提高电化学性能。主要研究内容与结论如下: (1) 本文中采用溶剂热法以H2(salen) 和FeCl3制备了Fe(salen) 配合物,利用硫粉对Fe(salen) 配合物经煅烧进行直接硫化,单步合成出硫化亚铁纳米颗粒均匀地嵌入在氮掺杂碳中的纳米复合材料 (FeS/C-N),方法简便且形貌可调控。这种独特结构可缓冲硫化亚铁的储钠体积膨胀、促进钠离子扩散、并能提高电化学反应活性,在保持硫化亚铁高储钠容量的同时电化学循环稳定性大大增强。通过调节其直接硫化时的煅烧温度,制备了500-FeS/C-N、600-FeS/C-N、700-FeS/C-N和800-FeS/C-N纳米复合材料等。通过表征分析其结构、组分和形貌,其中700-FeS/C-N纳米复合材料中不仅硫化亚铁颗粒大小统一,在氮掺杂碳中的颗粒分布也是相对最均匀。经电化学性能测试分析这些复合材料作为钠离子电池负极材料的应用潜力,用于钠离子电池负极,700-FeS/C-N纳米复合材料在100 mA g−1电流密度下,表现出616.0 mAh g−1的初始放电容量和67.2%的初始库伦效率。经过200次循环后仍然保持439.3/435.2 mAh g−1的高放/充电比容量。在200和500 mA g−1电流密度下,经过200次循环后其放/充电容量为411.0/405.2和353.6/349.8 mAh g−1。在电流密度从50 mA g−1倍增至3200 mA g−1再返回50 mA g−1的倍率性能测试中表现出优异的倍率性能,尤其是在3200 mA g−1的电流密度下的放电容量为279.6 mAh g−1。 (2) 采用相同方法以H2(salen) 和SnCl2制备了Sn(salen) 配合物,利用硫粉与Sn(salen)配合物经煅烧进行直接硫化,单步合成出硫化亚锡纳米颗粒均匀地嵌入在氮掺杂碳中的纳米复合材料 (SnS/C-N),通过调节其直接硫化时的煅烧温度,制备了500-SnS/C-N、600-SnS/C-N和700-SnS/C-N纳米复合材料等。其中,700-SnS/C-N复合材料中硫化亚锡纳米颗粒在氮掺杂碳中分散均匀且被良好的包覆。用作钠离子电池负极时,700-SnS/C-N在100 mA g−1电流密度下表现出659.2/453.4 mAh g−1的初始放/充电容量,68.8%的初始库伦效率,在250圈循环之后的放/充电容量分别为346.4/345.6 mAh g−1。在500 mA g−1电流密度下经过500次循环后其放/充电容量为266.2/265.4 mAh g−1。 |
外摘要要: |
Sodium-ion batteries (SIBs) are considered the next-generation battery technology with the potential to replace lithium-ion batteries (LIBs) due to their advantages such as low cost, wide operating temperature range, environmental friendliness, and high theoretical capacity, especially for applications in power batteries. However, the current drawback lies in the unsuitability of graphite, used in lithium-ion battery anodes, for sodium-ion batteries, necessitating the development of new anode materials. Currently, research on SIBs anode materials primarily focuses on carbon-based materials, alloy-based materials, and conversion-type materials. Carbon-based materials, due to their interlayer spacing being smaller than the sodium-ion insertion energy threshold, are not suitable for SIB anodes. Among conversion-type materials based on transformation reactions, iron sulfide (FeS) and tin sulfide (SnS) are two highly promising metal sulfide anode materials due to their low cost, high specific capacity, yet they face challenges such as large volume changes and low electrical conductivity during charge-discharge processes, hindering their practical applications. Research has shown that designing nanostructured materials and employing carbon coating can effectively address these issues. In this study, nano-composite materials of metal sulfides (FeS and SnS) embedded in carbon were successfully synthesized using a single-step sulfidation method, with Fe(salen) and Sn(salen) complexes as precursors. To enhance electrochemical performance and overcome inherent material limitations, novel nanostructures were designed. The main research findings and conclusions are summarized as follows: In this paper, FeS/C-N nano-composites were synthesized by direct sulfidation of Fe(salen) complexes using sulfur powder via a solvothermal method. This method yielded FeS nanoparticles uniformly embedded in nitrogen-doped carbon (FeS/C-N). The method is simple and allows for adjustable morphology and carbon structure. This unique structure buffers the sodium storage volume expansion of FeS, promotes sodium ion diffusion, and enhances electrochemical reaction activity, significantly improving both high sodium storage capacity and cycle stability. By adjusting the calcination temperature during direct sulfidation, nano-composite materials such as 500-FeS/C-N, 600-FeS/C-N, 700-FeS/C-N, and 800-FeS/C-N were prepared. Structural and morphological characterization confirmed that 700-FeS/C-N exhibited the most uniform distribution of FeS particles within nitrogen-doped carbon. Electrochemical performance testing demonstrated that as a negative electrode material for SIBs, 700-FeS/C-N nano-composites delivered an initial discharge capacity of 616.0 mAh g−1 and an initial Coulombic efficiency of 67.2% at a current density of 100 mA g−1. Even after 200 cycles, they maintained a high discharge/charge capacity of 439.3/435.2 mAh g−1. At current densities of 200 and 500 mA g−1, after 200 cycles, discharge/charge capacities were 411.0/405.2 and 353.6/349.8 mAh g−1, respectively. Excellent rate performance was demonstrated in rate capability tests, particularly at a current density of 3200 mA g−1, where the discharge capacity was 279.6 mAh g−1. SnS/C-N nano-composites were synthesized by direct sulfidation of Sn(salen) complexes using sulfur powder via the same method. This yielded SnS nanoparticles uniformly embedded in nitrogen-doped carbon (SnS/C-N). By adjusting the calcination temperature during direct sulfidation, nano-composite materials such as 500-SnS/C-N, 600-SnS/C-N, and 700-FeS/C-N were prepared. In 700-SnS/C-N composite materials, tin sulfide nanoparticles were uniformly dispersed in nitrogen-doped carbon and well encapsulated. As a negative electrode material for SIBs, 700-SnS/C-N exhibited an initial discharge/charge capacity of 659.2/453.4 mAh g−1 and an initial Coulombic efficiency of 68.8% at a current density of 100 mA g−1. After 250 cycles, the discharge/charge capacities were 346.4/345.6 mAh g−1. At a current density of 500 mA g−1, after 500 cycles, the discharge/charge capacities were 266.2/265.4 mAh g−1. |
参考文献: |
[1] P. K. Nayak, L. Yang, W. Brehm, et al. From lithium‐ion to sodium‐ion batteries: advantages, challenges, and surprises[J]. Angewandte Chemie International Edition, 2018, 57(1): 102-120.
﹀
[2] J. Li, J. Fleetwood, W. B. Hawley, et al. From materials to cell: state-of-the-art and prospective technologies for lithium-ion battery electrode processing[J]. Chemical Reviews, 2022, 122(1): 903-956. [3] Y. Zhang, L. Liu, L. Zhao, et al. Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries[J]. Advanced Composites and Hybrid Materials, 2022, 5(3): 2601-2610. [4] J. Zhong, T. Wang, L. Wang, et al. A silicon monoxide lithium-ion battery anode with ultrahigh areal capacity[J]. Nano-Micro Letters, 2022, 14(1): 50. [5] X. Xu, F. Li, D. Zhang, et al. Self-sacrifice template construction of uniform yolk-shell ZnS@C for superior alkali-ion storage[J]. Advanced Science, 2022, 9(14): 2200247. [6] C. Yang, S. Xin, L. Mai, et al. Materials design for high-safety sodium-ion battery[J]. Advanced Energy Materials, 2021, 11(2): 2000974. [7] M. S. Whittingham. Chemistry of intercalation compounds: Metal guests in chalcogenide hosts[J]. Progress in Solid State Chemistry, 1978, 12(1): 41-99. [8] M. S. Whittingham. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127. [9] J. Y. Hwang, S. T. Myung, Y. K. Sun. Sodium-ion batteries: present and future[J]. Chemical Society Reviews, 2017, 46(12): 3529-3614. [10] L. Otaegui, E. Goikolea, F. Aguesse, et al. Effect of the electrolytic solvent and temperature on aluminium current collector stability: A case of sodium-ion battery cathode[J]. Journal of Power Sources, 2015, 297: 168-173. [11] C. Geng, D. Buchholz, G. Kim, et al. Influence of salt concentration on the properties of sodium-based electrolytes[J]. Small Methods, 2019, 3(4): 1800208. [12] T. A. Pham, K. E. Kweon, A. Samanta, et al. Solvation and dynamics of sodium and potassium in ethylene carbonate from abinitio molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2017, 121(40): 21913-21920. [13] Z. Tian, Y. Zou, G. Liu, et al. Electrolyte solvation structure design for sodium ion batteries[J]. Advanced Science, 2022, 9(22): 2201207. [14] X. Zhu, X. Jiang, X. Liu, et al. A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste[J]. Green Energy & Environment, 2017, 2(3): 310-315. [15] Y. Fang, J. Zhang, L. Xiao, et al. Phosphate framework electrode materials for sodium ion batteries[J]. Advanced Science, 2017, 4(5): 1600392. [16] D. R. Gallus, R. Wagner, S. Wiemers-Meyer, et al. New insights into the structure-property relationship of high-voltage electrolyte components for lithium-ion batteries using the pKa value[J]. Electrochimica Acta, 2015, 184: 410-416. [17] M. Shakourian-Fard, G. Kamath, S. K. R. S. Sankaranarayanan. Evaluating the free energies of solvation and electronic structures of lithium-ion battery electrolytes[J]. ChemPhysChem, 2016, 17(18): 2916-2930. [18] T. Kajita, T. Itoh. Ether-based solvents significantly improved electrochemical performance for Na-ion batteries with amorphous GeOx anodes[J]. Physical Chemistry Chemical Physics, 2017, 19(2): 1003-1009. [19] B. Jache, J. O. Binder, T. Abe, et al. A comparative study on the impact of different glymes and their derivatives as electrolyte solvents for graphite co-intercalation electrodes in lithium-ion and sodium-ion batteries[J]. Physical Chemistry Chemical Physics, 2016, 18(21): 14299-14316. [20] T. Jin, X. Ji, P. Wang, et al. High-energy aqueous sodium-ion batteries[J]. Angewandte Chemie, 2021, 133(21): 12050-12055. [21] D. Pahari, S. Puravankara. Greener, safer, and sustainable batteries: an insight into aqueous electrolytes for sodium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2020: acssuschemeng.0c02145. [22] T. Liu, H. Wu, X. Du, et al. Water-locked eutectic electrolyte enables long-cycling aqueous sodium-ion batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(29): 33041-33051. [23] X. Wu, Y. Luo, M. Sun, et al. Low-defect prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J]. Nano Energy, 2015, 13: 117-123. [24] C. Ding, Z. Chen, C. Cao, et al. Advances in Mn-based electrode materials for aqueous sodium-ion batteries[J]. Nano-Micro Letters, 2023, 15(1): 192. [25] Z. Liang, F. Tian, G. Yang, et al. Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive[J]. Nature Communications, 2023, 14(1): 3591. [26] Q. Yang, Z. Zhang, X. G. Sun, et al. Ionic liquids and derived materials for lithium and sodium batteries[J]. Chemical Society Reviews, 2018, 47(6): 2020-2064. [27] A. Banerjee, K. H. Park, J. W. Heo, et al. Na3SbS4 : a solution processable sodium superionic conductor for all-solid-state sodium-ion batteries[J]. Angewandte Chemie International Edition, 2016, 55(33): 9634-9638. [28] K. Yoshida, T. Sato, A. Unemoto, et al. Fast sodium ionic conduction in Na2B10H10-Na2B12H12 pseudo-binary complex hydride and application to a bulk-type all-solid-state battery[J]. Applied Physics Letters, 2017, 110(10): 103901. [29] A. Inoishi, T. Omuta, E. Kobayashi, et al. A single-phase, all-solid-state sodium battery using Na3−xV2−xZrx(PO4)3 as the cathode, anode, and electrolyte[J]. Advanced Materials Interfaces, 2017, 4(5): 1600942. [30] N. S. M. Johari, A. Jonderian, S. Jia, et al. High-throughput development of Na2ZnSiO4-based hybrid electrolytes for sodium-ion batteries[J]. Journal of Power Sources, 2022, 541: 231706. [31] Y. Sun, Y. Zhang, Z. Xu, et al. Dilute hybrid electrolyte for low-temperature aqueous sodium-ion batteries[J]. ChemSusChem, 2022, 15(23): e202201362. [32] A. Firouzi, R. Qiao, S. Motallebi, et al. Monovalent manganese based anodes and co-solvent electrolyte for stable low-cost high-rate sodium-ion batteries[J]. Nature Communications, 2018, 9(1): 861. [33] S. Song, M. Kotobuki, F. Zheng, et al. A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries[J]. Journal of Materials Chemistry A, 2017, 5(14): 6424-6431. [34] L. Zhang, B. Zhu, D. Xu, et al. Yolk-shell FeSe2@CoSe2/FeSe2 heterojunction as anode materials for sodium-ion batteries with high rate capability and stability[J]. Journal of Materials Science & Technology, 2024, 172: 185-195. [35] G. Liu, J. Shi, M. Zhu, et al. Ultra-thin free-standing sulfide solid electrolyte film for cell-level high energy density all-solid-state lithium batteries[J]. Energy Storage Materials, 2021, 38: 249-254. [36] S. Kang, S. Y. Hong, N. Kim, et al. Stretchable lithium-ion battery based on re-entrant micro-honeycomb electrodes and cross-linked gel electrolyte[J]. ACS Nano, 2020, 14(3): 3660-3668. [37] D. Zhou, X. Tang, X. Guo, et al. Polyolefin-based janus separator for rechargeable sodium batteries[J]. Angewandte Chemie International Edition, 2020, 59(38): 16725-16734. [38] J. Zhang, Y. Lei, L. Zhou, et al. Ball-milling synthesis of richly oxygenated graphene-like nanoplatelets from used lithium ion batteries and its application for high performance sodium ion battery anode[J]. Advanced Functional Materials, 2024: 2314160. [39] S. Janakiraman, M. Khalifa, R. Biswal, et al. High performance electrospun nanofiber coated polypropylene membrane as a separator for sodium ion batteries[J]. Journal of Power Sources, 2020, 460: 228060. [40] X. Liang, J. Hwang, Y. Sun. Practical cathodes for sodium-ion batteries: who will take the crown?[J]. Advanced Energy Materials, 2023, 13(37): 2301975. [41] J. J. Braconnier, C. Delmas, C. Fouassier, et al. Comportement electrochimique des phases NaxCoO2[J]. Materials Research Bulletin, 1980, 15(12): 1797-1804. [42] A. Mendiboure, C. Delmas, P. Hagenmuller. Electrochemical intercalation and deintercalation of NaxMnO2 bronzes[J]. Journal of Solid State Chemistry, 1985, 57(3): 323-331. [43] Y. Zhuang, J. Zhao, Y. Zhao, et al. Carbon-coated single crystal O3-NaFeO2 nanoflakes prepared via topochemical reaction for sodium-ion batteries[J]. Sustainable Materials and Technologies, 2021, 28: e00258. [44] Z. Guo, X. Li, Y. Lyu, et al. Improved electrochemical performance of B doped O’3-NaMnO2 for Na-ion battery[J]. Electrochimica Acta, 2022, 430: 141079. [45] N. Jiang, Q. Liu, J. Wang, et al. Tailoring P2/P3 biphases of layered NaxMnO2 by Co substitution for high-performance sodium-ion battery[J]. Small, 2021, 17(7): 2007103. [46] F. Wang, B. Peng, S. Zeng, et al. Activating oxygen redox in layered NaxMnO2 to suppress intrinsic deficient behavior and enable phase-transition-free sodium ion cathode[J]. Advanced Functional Materials, 2022, 32(35): 2202665. [47] M. H. N. Assadi, Y. Shigeta. Dominant role of orbital splitting in determining cathode potential in O3 NaTMO2 compounds[J]. Journal of Power Sources, 2018, 388: 1-4. [48] J. B. Goodenough, H. Y. P. Hong, J. A. Kafalas. Fast Na+-ion transport in skeleton structures[J]. Materials Research Bulletin, 1976, 11(2): 203-220. [49] C. Delmas, et al. Sodium and sodium-ion batteries: 50 years of research[J]. Advanced Energy Materials, 2018, 8(17): 1703137. [50] N. S. Buryak, D. V. Anishchenko, E. E. Levin, et al. High-voltage structural evolution and its kinetic consequences for the Na4MnV(PO4)3 sodium-ion battery cathode material[J]. Journal of Power Sources, 2022, 518: 230769. [51] H. Li, M. Xu, C. Gao, et al. Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries[J]. Energy Storage Materials, 2020, 26: 325-333. [52] R. Rajagopalan, B. Chen, Z. Zhang, et al. Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries[J]. Advanced Materials, 2017, 29(12): 1605694. [53] Y. Zhao, X. Gao, H. Gao, et al. Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries[J]. Advanced Functional Materials, 2020, 30(10): 1908680. [54] H. Wang, T. Zhang, C. Chen, et al. High-performance aqueous symmetric sodium-ion battery using NASICON-structured Na2VTi(PO4)3[J]. Nano Research, 2018, 11(1): 490-498. [55] J. Dong, G. Zhang, X. Wang, et al. Cross-linked Na2VTi(PO4)3@C hierarchical nanofibers as high-performance bi-functional electrodes for symmetric aqueous rechargeable sodium batteries[J]. Journal of Materials Chemistry A, 2017, 5(35): 18725-18736. [56] M. Avdeev, Z. Mohamed, C. D. Ling, et al. Magnetic structures of NaFePO4 maricite and triphylite polymorphs for sodium-ion batteries[J]. Inorganic Chemistry, 2013, 52(15): 8685-8693. [57] J. Kim, D. H. Seo, H. Kim, et al. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries[J]. Energy & Environmental Science, 2015, 8(2): 540-545. [58] S. Qiu, X. Wu, M. Wang, et al. NASICON-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries[J]. Nano Energy, 2019, 64: 103941. [59] Y. Lu, L. Wang, J. Cheng, et al. Prussian blue: a new framework of electrode materials for sodium batteries[J]. Chemical Communications, 2012, 48(52): 6544. [60] L. Wang, J. Song, R. Qiao, et al. Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137(7): 2548-2554. [61] H. Lee, Y. I. Kim, J. K. Park, et al. Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries[J]. Chemical Communications, 2012, 48(67): 8416. [62] L. Medenbach, C. L. Bender, R. Haas, et al. Origins of dendrite formation in sodium-oxygen batteries and possible countermeasures[J]. Energy Technology, 2017, 5(12): 2265-2274. [63] Z. W. Seh, J. Sun, Y. Sun, et al. A highly reversible room-temperature sodium metal anode[J]. ACS Central Science, 2015, 1(8): 449-455. [64] Y. Cao, L. Xiao, M. L. Sushko, et al. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Letters, 2012, 12(7): 3783-3787. [65] B. Jache, P. Adelhelm. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of Co-intercalation phenomena[J]. Angewandte Chemie International Edition, 2014, 53(38): 10169-10173. [66] G. Yoon, H. Kim, I. Park, et al. Conditions for reversible Na intercalation in graphite: theoretical studies on the interplay among guest ions, solvent, and graphite host[J]. Advanced Energy Materials, 2017, 7(2): 1601519. [67] C. Yu, Y. Li, H. Ren, et al. Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries[J]. Carbon Energy, 2023, 5(1): e220. [68] Z. Lu, C. Geng, H. Yang, et al. Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes[J]. Proceedings of the National Academy of Sciences, 2022, 119(40): e2210203119. [69] D. Zhao, S. Jiang, S. Yu, et al. Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries[J]. Carbon, 2023, 201: 864-870. [70] Y. Chu, J. Zhang, Y. Zhang, et al. Reconfiguring hard carbons with emerging sodium-ion batteries: a perspective[J]. Advanced Materials, 2023, 35(31): 2212186. [71] Q. Jin, K. Wang, H. Li, et al. Tuning microstructures of hard carbon for high capacity and rate sodium storage[J]. Chemical Engineering Journal, 2021, 417: 128104. [72] M. Liu, F. Wu, Y. Bai, et al. Boosting sodium storage performance of hard carbon anodes by pore architecture engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(40): 47671-47683. [73] D. Wu, F. Sun, Z. Qu, et al. Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries[J]. Journal of Materials Chemistry A, 2022, 10(33): 17225-17236. [74] Y. Liang, N. Song, Z. Zhang, et al. Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage[J]. Advanced Materials, 2022, 34(28): 2202673. [75] S. Qiu, L. Xiao, M. L. Sushko, et al. manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Advanced Energy Materials, 2017, 7(17): 1700403. [76] T. Xu, X. Qiu, X. Zhang, et al. Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance[J]. Chemical Engineering Journal, 2023, 452: 139514. [77] M. Yuan, B. Cao, H. Liu, et al. Sodium storage mechanism of nongraphitic carbons: a general model and the function of accessible closed pores[J]. Chemistry of Materials, 2022, 34(7): 3489-3500. [78] N. Jiang, L. Chen, H. Jiang, et al. Introducing the solvent Co-intercalation mechanism for hard carbon with ultrafast sodium storage[J]. Small, 2022, 18(15): 2108092. [79] Q. Ren, J. Wang, L. Yan, et al. Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior[J]. Chemical Engineering Journal, 2021, 425: 131656. [80] M. Song, Z. Yi, R. Xu, et al. Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction[J]. Energy Storage Materials, 2022, 51: 620-629. [81] Y. Li, Y. S. Hu, X. Qi, et al. Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications[J]. Energy Storage Materials, 2016, 5: 191-197. [82] Q. Zhao, Z. Zhu, J. Chen. Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries[J]. Advanced Materials, 2017, 29(48): 1607007. [83] J. Xie, X. Cheng, X. Cao, et al. Nanostructured metal-organic conjugated coordination polymers with ligand tailoring for superior rechargeable energy storage[J]. Small, 2019, 15(49): 1903188. [84] J. Xie, Z. Wang, Z. J. Xu, et al. Toward a high-performance all-plastic full battery with a’single organic polymer as both cathode and anode[J]. Advanced Energy Materials, 2018, 8(21): 1703509. [85] J. Xie, Q. Zhang. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019, 15(15): 1805061. [86] S. Muench, A. Wild, C. Friebe, et al. Polymer-based organic batteries[J]. Chemical Reviews, 2016, 116(16): 9438-9484. [87] H. guo Wang, S. Yuan, Z. Si, et al. Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries[J]. Energy & Environmental Science, 2015, 8(11): 3160-3165. [88] S. Xu, G. Wang, B. P. Biswal, et al. A nitrogen-rich 2D sp2-carbon-linked conjugated polymer framework as a high-performance cathode for lithium-ion batteries[J]. Angewandte Chemie, 2019, 131(3): 859-863. [89] X. Fan, F. Wang, X. Ji, et al. A universal organic cathode for ultrafast lithium and multivalent metal batteries[J]. Angewandte Chemie International Edition, 2018, 57(24): 7146-7150. [90] C. R. DeBlase, K. Hernández-Burgos, K. E. Silberstein, et al. Rapid and efficient redox processes within 2D covalent organic framework thin films[J]. ACS Nano, 2015, 9(3): 3178-3183. [91] L. Niu, J. N. Coleman, H. Zhang, et al. Production of two-dimensional nanomaterials via liquid-based direct exfoliation[J]. Small, 2016, 12(3): 272-293. [92] J. Zhao, M. Zhou, J. Chen, et al. Phthalocyanine-based covalent organic frameworks as novel anode materials for high-performance lithium-ion/sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 425: 131630. [93] Z. Guan, H. Liu, B. Xu, et al. Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material[J]. Journal of Materials Chemistry A, 2015, 3(15): 7849-7854. [94] B. Zhang, G. Rousse, D. Foix, et al. Microsized Sn as advanced anodes in glyme-based electrolyte for Na-ion batteries[J]. Advanced Materials, 2016, 28(44): 9824-9830. [95] Y Zhang, Q Wang, K Zhu, et al. Edge sites-driven accelerated kinetics in ultrafine Fe2O3 nanocrystals anchored graphene for enhanced alkali metal ion storage[J]. Chemical Engineering Journal, 2022, 428: 131204. [96] H. Usui, Y. Domi, E. Iwama, et al. α-Fe2O3 conversion anodes with improved Na-Storage properties by Sb addition[J]. Materials Chemistry and Physics, 2021, 272: 125023. [97] L. Jing, Z. Kong, F. Guo, et al. Porous structures of carbon-doped Co3O4 with tunable morphologies from microflowers to cubes as anodes for high performance lithium/sodium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 881: 160588. [98] Y. Liu, C. Yang, Q. Zhang, et al. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries[J]. Energy Storage Materials, 2019, 22: 66-95. [99] Y. Zhu, L. Suo, T. Gao, et al. Ether-based electrolyte enabled Na/FeS2 rechargeable batteries[J]. Electrochemistry Communications, 2015, 54: 18-22. [100] A. K. Haridas, H. Kim, C. H. Choi, et al. Simple design of an in situ generated iron sulfide/carbon heterostructure with N, S codoping for high performance lithium/sodium-ion batteries[J]. Applied Surface Science, 2021, 554: 149587. [101] D. Yang, W. Chen, X. Zhang, et al. Facile and scalable synthesis of low-cost FeS@C as long-cycle anodes for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2019, 7(34): 19709-19718. [102] F. Luo, X. Feng, L. Zeng, et al. In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries[J]. Chemical Engineering Journal, 2021, 404: 126430. [103] Q. Zhou, L. Liu, Z. Huang, et al. Co3S4@polyaniline nanotubes as high-performance anode materials for sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(15): 5505-5516. [104] J. Chen, S. Li, V. Kumar, et al. Carbon coated bimetallic dulfide hollow nanocubes as advanced sodium ion battery anode[J]. Advanced Energy Materials, 2017, 7(19): 1700180. [105] J. Xiang, T. Song. One-pot synthesis of multicomponent (Mo, Co) metal sulfide/carbon nanoboxes as anode materials for improving Na-ion storage[J]. Chemical Communications, 2017, 53(78): 10820-10823. [106] D. Chao, C. Zhu, P. Yang, et al. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance[J]. Nature Communications, 2016, 7(1): 12122. [107] E. Duraisamy, P. Prabunathan, G. Mani, et al. [Zn(Salen)] metal complex-derived ZnO-implanted carbon slabs as anode material for lithium-ion and sodium-ion batteries[J]. Materials Chemistry Frontiers, 2021, 5(10): 3886-3896. [108] C. Liu, Q. Lu, M. V. Gorbunov, et al. Ultrasmall CoS nanoparticles embedded in heteroatom-doped carbon for sodium-ion batteries and mechanism explorations via synchrotron X-ray techniques[J]. Journal of Energy Chemistry, 2023, 79: 373-381. [109] M. Liu, Q. Wang, Y. Ding, et al. Co–Salen complex-derived CoP nanoparticles confined in N-doped carbon microspheres for stable sodium storage[J]. Inorganic Chemistry, 2021, 60(22): 17151-17160. [110] X. Sun. Sieving carbons reconfigure non-graphitic carbons for practical sodium batteries[J]. National Science Review, 2022, 9(8): nwac126. [111] N. A. Kumar, R. R. Gaddam, S. R. Varanasi, et al. Sodium ion storage in reduced graphene oxide[J]. Electrochimica Acta, 2016, 214: 319-325. [112] L. Ma, B. Hou, H. Zhang, et al. Regulation of MIL-88B(Fe) to design FeS2 core-shelled hollow sphere as high-rate anode for a full sodium-ion battery[J]. Chemical Engineering Journal, 2023, 453: 139735. [113] J. Chen, G. Adit, L. Li, et al. Optimization strategies toward functional sodium-ion batteries[J]. Energy & Environmental Materials, 2023, 6(4): e12633. [114] R. Zeng, J. Zhang, H. B. Guan, et al. Controllable self-assembled flower-like FeS with N-doped carbon coating anchored on S-doped reduced graphene oxide as high-performance lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2022, 928: 167244. [115] M. Zhong, L. Kong, N. Li, et al. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries[J]. Coordination Chemistry Reviews, 2019, 388: 172-201. [116] T. L. Hayes, R. F. W. Pease. The scanning electron microscope: principles and applications in biology and medicine[M]. Advances in Biological and Medical Physics: Vol. 12. Elsevier, 1968: 85-137. [117] P. J. Goodhew, D. Chescoe. Microanalysis in the transmission electron microscope[J]. Micron (1969), 1980, 11(2): 153-181. [118] M. Zhang, W. Zhou, W. Huang. Characterization methods of organic electrode materials[J]. Journal of Energy Chemistry, 2021, 57: 291-303. [119] Y. Kaburagi, A. Yoshida, Y. Hishiyama. Raman spectroscopy[M]. Materials Science and Engineering of Carbon. Elsevier, 2016: 125-152. [120] S. Loganathan, R. B. Valapa, R. K. Mishra, et al. Thermogravimetric analysis for characterization of nanomaterials[M]. Thermal and Rheological Measurement Techniques for Nanomaterials Characterization. Elsevier, 2017: 67-108. [121] A. K. Haridas, M. K. Sadan, Y. Liu, et al. Simple and scalable gelatin-mediated synthesis of a novel iron sulfide/graphitic carbon nanoarchitecture for sustainable sodium-ion storage[J]. Journal of Alloys and Compounds, 2022, 928: 167125. [122] W. Chen, X. Zhang, L. Mi, et al. High-performance flexible freestanding anode with hierarchical 3D carbon-networks/Fe7S8/Graphene for applicable sodium-ion batteries[J]. Advanced Materials, 2019, 31(8): 1806664. [123] Y. Zhao, J. Wang, C. Ma, et al. Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries[J]. Chemical Engineering Journal, 2019, 378: 122168. [124] Y. Liu, W. Zhong, C. Yang, et al. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(48): 24702-24708. [125] K. Han, F. An, Q. Wan, et al. Confining pyrrhotite Fe7S8 in carbon nanotubes covalently bonded onto 3D few-layer graphene boosts potassium-ion storage and full-cell applications[J]. Small, 2021, 17(12): 2006719. [126] H. Shan, X. Li, Y. Cui, et al. Sulfur/nitrogen dual-doped porous graphene aerogels enhancing anode performance of lithium ion batteries[J]. Electrochimica Acta, 2016, 205: 188-197. [127] P. Xie, X. Wang, Z. Qian, et al. In-situ synthesis of FeS/N, S co-doped carbon composite with electrolyte-electrode synergy for rapid sodium storage[J]. Journal of Colloid and Interface Science, 2023, 640: 791-800. [128] J. Wu, Z. Pan, Y. Zhang, et al. The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries[J]. Journal of Materials Chemistry A, 2018, 6(27): 12932-12944. [129] Y. Zhang, L. Li, Y. Xiang, et al. High sulfur-doped hard carbon with advanced potassium storage capacity via a molten salt method[J]. ACS Applied Materials & Interfaces, 2020, 12(27): 30431-30437. [130] M. Li, F. Xu, H. Li, et al. Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation[J]. Catalysis Science & Technology, 2016, 6(11): 3670-3693. [131] A. K. Haridas, H. Kim, C. H. Choi, et al. Simple design of an in situ generated iron sulfide/carbon heterostructure with N, S codoping for high performance lithium/sodium-ion batteries[J]. Applied Surface Science, 2021, 554: 149587. [132] A. K. Haridas, H. Kim, C. H. Choi, et al. Simple design of an in situ generated iron sulfide/carbon heterostructure with N, S codoping for high performance lithium/sodium-ion batteries[J]. Applied Surface Science, 2021, 554: 149587. [133] Z. Cao, H. Song, B. Cao, et al. Sheet-on-sheet chrysanthemum-like C/FeS microspheres synthesized by one-step solvothermal method for high-performance sodium-ion batteries[J]. Journal of Power Sources, 2017, 364: 208-214. [134] C. Li, K. Pfeifer, X. Luo, et al. Investigation of SnS2-rGO sandwich structures as negative electrode for sodium-ion and potassium-ion batteries[J]. ChemSusChem, 2023, 16(7): e202202281. [135] 李婵.过渡金属氧化物负极材料的制备与电化学行为表征:[硕士学位论文]. 哈尔滨:哈尔滨工业大学,2020. [136] A. Glibo, N. Eshraghi, Y. Surace, et al. Comparative study of electrochemical properties of SnS and SnS2 as anode materials in lithium-ion batteries[J]. Electrochimica Acta, 2023, 441: 141725. [137] Z. Zhu, G. Hyett, G. Reid, et al. High sodium-ion battery capacity in sulfur-deficient tin(II) sulfide thin films with a microrod morphology[J]. Small Structures, 2023, 4(8): 2200396. [138] J. Xia, L. Liu, S. Jamil, et al. Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries[J]. Energy Storage Materials, 2019, 17: 1-11. [139] H. Wu, S. Li, X. Yu. Structural engineering of SnS quantum dots embedded in N, S Co-Doped carbon fiber network for ultrafast and ultrastable sodium/potassium-ion storage[J]. Journal of Colloid and Interface Science, 2024, 653: 267-276. [140] B. Yan, L. Lin, H. Sun, et al. Double-shelled NiS/SnS@N-doped carbon nanoboxes engineered from NiSn(OH)6 cube templates for advanced sodium-ion battery anodes[J]. Chemical Engineering Journal, 2023, 477: 146950. [141] H. Yin, L. Jia, H. Y. Li, et al. Point-cavity-like carbon layer coated SnS nanotubes with improved energy storage capacity for lithium/sodium ion batteries[J]. Journal of Energy Storage, 2023, 65: 107354. [142] J. Shi, Y. Wang, Q. Su, et al. N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries[J]. Chemical Engineering Journal, 2018, 353: 606-614. [143] S. Chen, Z. Ao, B. Sun, et al. Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries[J]. Energy Storage Materials, 2016, 5: 180-190. [144] J. Yang, X. Zhou, D. Wu, et al. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Advanced Materials, 2017, 29(6): 1604108. |
开放日期: | 2027-08-17 |