论文题名(中文): | 气候变化影响下山西省不同植被NDVI 时空演变研究 |
作者: | |
学号: | 2021010738 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070503 |
学科名称: | 理学 - 地理学 - 地图学与地理信息系统 |
学生类型: | 硕士 |
学位: | 理学硕士 |
学校: | 延边大学 |
院系: | |
专业: | |
第一导师姓名: | |
第一导师学校: | |
论文完成日期: | 2024-08-09 |
论文答辩日期: | 2024-07-30 |
论文题名(外文): | Temporal and spatial changes of NDVI of different vegetation in Shanxi Province under the influence of climate change |
关键词(中文): | |
关键词(外文): | Different land use vegetation NDVI Meteorological factor Partial correlation analysis Shanxi Province |
论文文摘(中文): |
山西省地处中国大陆内部,黄土高原东部,整体处于半湿润地区,西北少部分位于半干旱地区。是典型的资源型经济省份,有着得天独厚的煤炭资源,在全球气候变暖的背景下,随着煤炭长时间、大规模、超强度的开采,全省的生态环境长期处于积重难返的境地。而植被作为陆地生态系统的重要组成部分,在调节区域气候、维持地表能量平衡和生物多样性方面发挥着重要作用,研究山西省植被覆盖变化情况与气候变化的相应详细迫在眉睫。本研究基于三期土地利用遥感数据(2000年、2010年、2022年)、山西省及其周边140个气象站点数据(降水、气温、日照、湿度)、MODIS13Q1数据,运用土地利用转移矩阵、趋势分析法、偏相关分析、相关性强度等方法分析了2001-2022年山西省植被结构变化特征,从不同时间尺度下(年际、生长季、四季)分析了不同植被NDVI时空变化特征、不同植被气候变化趋势和特征(降水、气温、日照、湿度)及不同植被NDVI与气候变化的相关关系分析。得出以下结论: (1)研究区包括林地、耕地、草地。其中耕地、草地面积总体呈减少趋势,林地面积总体呈增加趋势。 (2)研究区NDVI整体处于增长态势。显著退化区域(-0.039--0.01)仅占全省面积的0.59%,轻微退化(-0.01--0.001)占全省面积的3.37%,未变化区域(-0.001-0.001)占全省面积的3.21%;轻微改善区域(0.001-0.01)占全省面积的70.26%;明显改善态势(0.01-0.043)占全省面积的22.57%。耕地、林地、草地NDVI均呈增长态势,且除林地外,其他植被NDVI变化周期较为相似,波峰和波谷出现时间几乎同步,可能由人类活动造成。其中草地增长幅度(0.077/10a)>耕地(0.069/10a)>林地(0.054/10a);生长季和四季耕地、林地、草地 NDVI 变化均呈增长趋势。其中生长季草地增长幅度(0.074/10a)>耕地(0.065/10a)>林地(0.063/10a);春季林地增长幅度(0.066/10a)>草地(0.059/10a)>耕地(0.045/10a);夏季草地增长幅度(0.084/10a)>耕地(0.081/10a)>林地增长幅度(0.059/10a);秋季草地增长幅度(0.057/10a)>林地(0.053/10a)>耕地(0.046/10a);冬季林地增长幅度(0.055/10a)>草地(0.042/10a)>耕地(0.0356/10a)。 (3)不同植被类型下,山西省降水、气温、日照时数总体均呈增长态势,湿度呈减少态势。总体上看,除冬季外,其他时间尺度降水均呈增长态势,表明冬季降水减少,气候干旱趋势明显;不同植被类型气温均呈增长态势,表明研究期内山西省气候不断变暖;除秋季外,其他时间尺度日照总体呈增长态势;研究期内,山西省湿度均呈减少态势,干旱趋势明显。 (4)山西省年际植被NDVI正向主导响应因子为降水;生长季植被NDVI正向主导响应因子为降水;春季植被NDVI正向主导响应因子为气温,春季草地NDVI正向主导响应因子为降水,表明春季草地植被对降水的响应最为敏感,草地较其他地类最早进入生长阶段;夏季植被NDVI正向主导响应因子为降水;秋季植被NDVI与气象因子响应较弱;冬季植被NDVI正向主导响应因子为日照,负向主导响应因子为湿度。2001-2022年年际、生长季、夏季山西省各植被NDVI主导响应因子均为降水,表明山西省植被对降水响应最为敏感,明显高于其他气象因子,降水仍然是制约山西植被生长的关键因素。 |
文摘(外文): |
Shanxi Province is located in the interior of the Chinese mainland, east of the Loess Plateau, in a semi-humid region as a whole, with a small part of the northwest in a semi-arid region. It is a typical resource-based economic province with unique coal resources. Under the background of global warming, with the long-term, large-scale and ultra-intensive mining of coal, the ecological environment of the province has been in a difficult situation for a long time. As an important part of the terrestrial ecosystem, vegetation plays an important role in regulating regional climate, maintaining surface energy balance and biodiversity. It is urgent to study the changes of vegetation cover and climate change in Shanxi Province. Based on three periods of remote sensing land use data (2000, 2010, 2022), 140 meteorological stations in Shanxi Province and its surrounding areas (precipitation, temperature, sunshine, humidity), and MODIS13Q1 data, this study used land use transfer matrix, trend analysis, partial correlation analysis, correlation strength and other methods to analyze 2001-202 The characteristics of vegetation structure change in Shanxi Province in 2 years were analyzed from different time scales (interannual, growing season and four seasons), the spatio-temporal variation of NDVI of different vegetation, the trend and characteristics of climate change of different vegetation (precipitation, temperature, sunshine, humidity), and the correlation between NDVI and climate change of different vegetation were analyzed. The following conclusions are drawn: (1) The study area includes woodland, cultivated land and grassland. The total area of cultivated land and grassland decreased, while the total area of forest land increased. (2) NDVI in the study area is in an overall growth trend. The significant degradation area (-0.039--0.01) accounted for 0.59% of the province's area, the slight degradation area (-0.01--0.001) accounted for 3.37% of the province's area, and the unchanged area (-0.001 --0.001) accounted for 3.21% of the province's area. The area of slight improvement (0.001-0.01) accounted for 70.26% of the province; The significant improvement trend (0.01-0.043) accounted for 22.57% of the province's area. NDVI of cultivated land, forest land and grassland all showed an increasing trend, and the change cycle of NDVI of other vegetation except forest land was similar, and the time of peak and trough appeared almost simultaneously, which may be caused by human activities. The growth rate of grassland (0.077/10a) > cultivated land (0.069/10a) > forest land (0.054/10a); The changes of NDVI in cultivated land, forest land and grassland in growing season and four seasons showed an increasing trend. The growth rate of grassland (0.074/10a) > cultivated land (0.065/10a) > forest land (0.063/10a); In spring, the growth rate of forest land (0.066/10a) > grassland (0.059/10a) > cultivated land (0.045/10a); The growth rate of grassland (0.084/10a) > cultivated land (0.081/10a) > forest land (0.059/10a) in summer; The growth rate of grassland (0.057/10a) > forest land (0.053/10a) > cultivated land (0.046/10a) in autumn; The growth rate of forest land in winter (0.055/10a) > grassland (0.042/10a) > cultivated land (0.0356/10a). (3) Under different vegetation types, precipitation, temperature and sunshine duration in Shanxi Province showed an overall increase trend, while humidity showed a decrease trend. In general, except winter, the precipitation of other time scales showed an increasing trend, indicating that winter precipitation decreased and climate drought trend was obvious. The temperature of different vegetation types showed an increasing trend, indicating that the climate in Shanxi Province was continuously warming during the study period. In addition to autumn, the sunshine in other time scales generally increased. During the study period, the humidity in Shanxi Province showed a decreasing trend, and the drought trend was obvious. (4) Precipitation was the dominant positive response factor of NDVI in Shanxi Province. The dominant positive response factor of NDVI in the growing season was precipitation. The NDVI positive response factor of spring vegetation was temperature, and the NDVI positive response factor of spring grassland was precipitation, indicating that spring grassland vegetation was the most sensitive to precipitation, and grassland entered the growth stage earlier than other land species. The dominant positive response factor of NDVI in summer was precipitation. The response of NDVI to meteorological factors was weak in autumn. The positive dominant response factor of NDVI in winter is sunshine and the negative dominant response factor is humidity. The dominant NDVI response factor of all vegetation in Shanxi Province during the interannual, growing season and summer from 2001 to 2022 is precipitation, indicating that vegetation in Shanxi Province is most sensitive to precipitation, which is obviously higher than other meteorological factors. Precipitation is still the key factor restricting vegetation growth in Shanxi Province. |
参考文献: |
[1]IPCC.Climate change 2007:impacts,adaptation,and vulnerability:contribution of working group II to thefourth assessment report of the Intergovernmental Panel on Climate Change[M].Cambridge: Cambridge University Press,2007.
﹀
[2]IPCC.Special report on global warming of 1.5℃[M].UK:Cambridge University Press,2018. [3]Thomas J C.Causes of climate change over the past 1000 years[J].Science,2000,289:270-277. [4]Petit J R,Jouzel J,Raynaud,D,et al.Climate and atmospherich istory of the past 420,000 years from the Vostok ice core,Ant-arctica[J].Nature,1999,399:429-436. [5]IPCC. 2019:Summary for Policymakers.In:IPCC Special Report on the Ocean and Cryosphere in a Changing Climate[M].UK: Cambridge University Press,2019. [6]Mudryk L, Kushner P,Derksen C,et al.Snow cover response to temperature in observational and climate model ensembles[J].Geophysical Research Letters, 2017, 44 (2): 919-926. [7]Onarheim I H, Eldevik T,Smedsrud L H, et al. Seasonal and regional manifestation of Arctic sea iceloss[J].Journal of Climate,2018,31 (12):4917-4932. [8]WCRP Global Sea Level Budget Group.Global sea-level budget 1993-present[J].Earth SystemScience Data, 2018,10 (3):1551-1590. [9]Lickley M J, Hay C C,Tamisiea M E, et al.Bias in estimates of global mean sea level changeinferred from satellite altimetry[J].Journal of Climate,2018, 31 (13):5263-5271. [10]LUO Y Q,SHERRY R,ZHOU X H,et al.Terrestrial carbon-cycle feedback to climate warming:experimental evidence on plant regulation and impacts of biofuel feedstock harvest[J].Global Change Biology Bioenergy,2009,1(1):62-74. [11]LUO Y Q.Terrestrial carbon-cycle feedback to climate warming[J].Annual Review of Ecology Evolution and Systematics,2007,38:683-712. [12]Gutman G,Ignatov A.The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].International Journal of Remote Sensing,1998,19(8):1 533-1 543. [13]方精云,郭兆迪,朴世龙.1981-2000 年中国陆地植被碳汇的估算[J].中国科学(D 辑),2007,37(6):804-812. [14] WU Z T,DIJKSTRA P,KOCH G W,et al.Responses of terrestrial ecosystems to temperature and precipitation change:a meta-analysis of experimental manipulation[J].Global Change Biology,2011,17(2):927-942. [15] 张远东, 张笑鹤, 刘世荣. 西南地区不同植被类型归一化植被指数与气象因子的相关分析[J]. 应用生态学报, 2011, 22(2): 323-30. [16] 冷若琳, 张瑶瑶, 谢建全, 等. 基于多光谱数据与小型无人机的甘南草地非生长季植被覆盖度[J]. 草业科学, 2019, 36(11): 2742-51. [17] Karnieli A, Agam N, Pinker R T, et al. Use of NDVI and land surface temperature for drought assessment: Merits and limitations[J]. Journal of climate, 2010, 23(3): 618-33. [18] 李杨, 王杰, 黄春林. 一种基于归一化扰动模型的积雪和植被覆盖度反演方法[J]. 地球信息科学学报, 2019, 21(12): 1955-64. [19] 刘丽丽. 基于不同植被指数提取 GF-1 植被覆盖度比较分析![J]. 西部大开发(土地开发工程研究), 2018, 3(04): 1-6+16. [20] 张晓东, 刘湘南, 赵志鹏, 等. 基于像元二分法的盐池县植被覆盖度与地质灾害点时空格局分析[J]. 国土资源遥感, 2018, 30(2): 195-201. [21] 马程, 李双成, 刘金龙, 等. 基于 SOFM 网络的京津冀地区生态系统服务分区[J]. 地理科学进展, 2013, 32(9): 1383-93. [22] 成文东. 大渡河流域植被变化遥感监测研究[D]. 成都: 成都理工大学, 2019. [23] 陈昀琳. 基于 Landsat 和 MODIS NDVI 时序数据的青海湖流域植被覆盖度提取及其变化分析[D]. 武汉: 中国地质大学(北京), 2019. [24] 王建宏. 塔里木河下游生态输水后地下水的响应分析[J]. 河南水利与南水北调, 2020, 49(1): 41-3. [25] 张士华. 山西省“十三五”坡耕地水土流失综合治理成效[J]. 山西水土保持科技, 2021, 03: 1-2+14. [26] 秦雪芬, 李毳. 山西省水土流失综合治理成效、问题及对策[C]//中国环境科学学会 2021 年科学技术年会论文集(三). 天津: 电子杂志社有限公司, 2021: 41-45. [27]何凡能,李美娇,肖冉.中美过去 300 年土地利用变化比较[J].地理学报,2015,70(02): 297-307. [28]尹永飞,陈星,张洁,汤剑平.中国过去 300 年土地利用变化及其气候效应[J].第四纪 研究,2009,29(06):1162-1169. [29]Redman CL.Human impact on ancient enviroments[M].Tucson:University of Arizona Press, 1999 [30]缪利,陆晴,刘根林等.1999-2019年青藏高原不同植被类型NDVI时空演变特征及其对气象因子的响应[J].水土保持研究,2023,30(01):97-105. [31]孙瑞,张方敏,翁升恒等.2001-2021年中国NDVI时空格局变化及对气候的响应[J].中国环境科学,2023,43(10):5519-5528. [32]鲁韦坤,李湘,余凌翔等.云南省陆地生态系统和土地利用类型的NDVI时空变化特征[J].气象与环境科学,2020,43(03):71-77. [33]杨艳萍,陈建军,覃巧婷等.2000-2018年广西植被时空变化及其对地形、气候和土地利用的响应[J].农业工程学报,2021,37(17):234-241. [34]刘润,姜琦刚,史鹏飞等.辽宁省抚顺市2000-2020年土地利用格局变化与生态环境效应[J].水土保持通报,2021,41(06):353-360. [35]任立清.艾比湖流域植被时空变化及驱动力分析[J].干旱区地理,2022,45(02):467-477. [36]王静,王克林,张明阳等.南方丘陵山地带NDVI时空变化及其驱动因子分析[J].资源科学,2014,36(08):1712-1723. [37]夏正清,谢艳玲,王涛.神府矿区土地利用与NDVI时空变化及其驱动因素分析[J].中国农学通报,2021,37(14):97-105. [38]李跃鹏,刘海艳,周维博.陕西省1982—2015 NDVI时空分布特征及其与气象因子相关性[J].生态科学,2017,36(06):153-160. [39]崔林丽,史军,肖风劲等.中国东部NDVI的变化趋势及其与气象因子的相关分析[J].资源科学,2010,32(01):124-131. [40]杨光华,包安明,陈曦等.气候和土地利用变化对塔里木河干流区植被覆盖变化的影响[J].中国沙漠,2010,30(06):1389-1397. [41]章文波, 符素华, 刘宝元. 目估法测量植被覆盖度的精度分析[J]. 北京师范大学学报(自然科学版), 2001, 03: 402-8. [42]杨琴, 蒲红梅, 赵学春, 等. 3 种人工草地不同植被覆盖度实地测量方法比较[J]. 应 用与环境生物学报, 2021, 27(1): 220-7. [43]章文波, 刘宝元, 吴敬东. 小区植被覆盖度动态快速测量方法研究[J]. 水土保持通 报, 2001, 06: 60-3. [44]龚大鑫, 贠汉伯, 窦学诚, 等. 青藏工程走廊多年冻土段植被覆盖度动态快速测量方法研究[J]. 中国沙漠, 2013, 33(2): 412-8. [45]赵铭石,勾晓华,周非飞等.黑河中上游地区NDVI对气象因子的响应分析[J].兰州大学学报(自然科学版),2011,47(06):33-38. [46]贾丹阳,熊祯祯,高岩等.近30a台特玛湖地区土地利用/土地覆被变化及其影响因素[J].干旱区地理,2021,44(04):1022-1031. [47]易扬,胡昕利,史明昌等.基于MODIS NDVI的长江中游区域植被动态及与气象因子的关系[J].生态学报,2021,41(19):7796-7807. [48]邱凤婷,过志峰,张宗科等.大湄公河次区域植被覆盖时空变化特征及其与气象因子的关系[J].南京林业大学学报(自然科学版),2022,46(02):187-195. [49]付建新,曹广超,郭文炯.1998—2017年祁连山南坡不同海拔、坡度和坡向生长季NDVI变化及其与气象因子的关系[J].应用生态学报,2020,31(04):1203-1212. [50]渠翠平,关德新,王安志等.科尔沁草甸草地归一化植被指数与气象因子的关系[J].应用生态学报,2009,20(01):58-64. [51]刘绿柳,许红梅.黄河流域主要植被类型NDVI变化规律及其与气象因子的关系[J].中国农业气象,2007(03):334-337. [52]陈春波,李刚勇,彭建.1981—2018年新疆草地归一化植被指数时空特征及其对气候变化的响应[J].生态学报,2023,43(04):1537-1552. [53]徐勇,黄雯婷,窦世卿等.2000-2020年西南地区植被NDVI对气候变化和人类活动响应特征[J].环境科学,2022,43(06):3230-3240. [54]欧阳习军,董晓华,魏榕等.青藏高原植被生长季NDVI时空变化及对气象因子的响应分析[J].水土保持研究,2023,30(02):220-229. [55]聂桐,董国涛,蒋晓辉等.延安地区植被覆盖度时空变化及驱动力[J].水土保持研究,2021,28(05):340-346. [56]高萌萌,刘琼,王轶等.内蒙古西辽河平原植被指数时空变化及其影响因素研究[J].水文地质工程地质,2022,49(01):175-182. [57]陆晴,刘根林,缪利等.2000—2018年江西省NDVI时空演变特征及其与气象因子关系分析[J].东华理工大学学报(自然科学版),2021,44(04):370-376. [58]Mo K L, Chen Q W, Chen C, et al. Spatiotemporal variation of correlation between vegetation cover and precipitation in an arid mountain-oasis river basin in north west China[J].Journal of Hydrology,2019,574: 138-147. [59]Arnab Kundu, DM Denis, NR Patel and Dipanwita Dutta. A Geo-spatial study for analysing temporal responses of NDVI to rainfall[J].Singapore Journal of Tropical Geography, 2018,25:107-116 [60]Dipanwita Dutta et al. Patel (2013) Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index, Geocarto International, 28:3, 192-209, [61]I. Fabricante, M. Oesterheld, J.M. Paruelo,Annual and seasonal variation of NDVI explained by current and previous precipitation across Northern Patagonia,Journal of Arid Environments,2009, 73:745-753, [62]S.E. Nicholson, M.L. Davenport, A.R. Malo,A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR Climatic Change, 17 (1990), pp. 209-241 [63]S. Nicholson,On the question of the “recovery” of the rains in the West African Sahel,Journal of Arid Environments,2005, 63:615-641 [64]K. Kaufmanne et al,The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data, Geophysical Research Letters[J], 2003,30:22-28 [65]J. Hansen et al. GLOBAL SURFACE TEMPERATURE CHANGE, Reviews of Geophysics[J],2010,48: [66]Li, Bing & Zhang, Xuxiang & Guo, Feng & Wu, Weimin & Zhang, Tong. (2015). Li et al (2013)-Water Research. [67]Marina Bigerna, Andriy Bazylenko, Sebastián Torrella, Vegetation phenology in the Argentinean Wet Chaco: Assessing seasonality and precipitation dependence through NDVI MODIS time series (2000–2018), Austral Ecology, 2022, 47:629-640. [68]Qin Dai, Chen-feng Cui, Shuo Wang, Spatiotemporal variation and sustainability of NDVI in the Yellow River basin, Irrigation and Drainage, 2022,volume 71,issue 5:1304-1318 [69]Meriame Mohajane , Ali Essahlaoui , Fatiha Oudija, Mohammed El Hafyani and Ana Cláudia Teodoro, Mapping Forest Species in the Central Middle Atlas of Morocco (Azrou Forest) through Remote Sensing Techniques, International Journal of Geo-Information, 2017 [70]Jeronimo Alencar, Cecilia Ferreira de Mello, Lucía Rodríguez-Planes, Júlia dos Santos Silva, Hélcio Reinaldo Gil-Santana, Amanda Queiroz Bastos, Hermano Gomes Albuquerque, William Costa Rodrigues, Anthony Érico Guimarães, Ecosystem diversity of mosquitoes (Diptera: Culicidae) in a remnant of Atlantic Forest, Rio de Janeiro state, Brazil, Austral Entomology[J], 2020,Volume60, Issue1:244-256 [71]Singh, Ravindra & Dubey, Chandra & Singh, I & Shukla, Dericks & Mishra, I & Tajbakhsh, Mohammad & S, Ningthoujam & Sharma, A new slope mass rating in mountainous terrain, Jammu and Kashmir Himalayas: application of geophysical technique in slope stability studies. (2013). Singh et al. 2013. Landslides. 10. 255-265. [72]Elena N. Kirillova, August Andersson, Suresh Tiwari, Atul Kumar Srivastava, Deewan Singh Bisht, Örjan Gustafsson, Water-soluble organic carbon aerosols during a full New Delhi winter: Isotope-based source apportionment and optical properties, JGR Atmospheres, Volume119, Issue6, 2014, Pages 3476-3485 [73]Yadav, M., Jhunjhunwala, S., Phung, Q. et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 515, 572–576 (2014). [74]Huete, Alfredo, Remote Sensing for Environmental Monitoring, Environmental Geoinformatics, 2004,3-16 [75]Hunt, Pam and Lori Goetz. “Research on Inclusive Educational Programs, Practices, and Outcomes for Students with Severe Disabilities.” The Journal of Special Education 31 (1997): 293. [76] Gorelick NHancher MDixon M et al., Google Earth Engine: Planetary-scale geospatial analysis for everyoneSee more Remote Sensing of Environment, JOURNAL ARTICLE, (2017) 202 18-27. [77] Felegari, Shilan & Sharifi, Alireza & Moravej, Kamran & Golchin, Ahmad & Tariq, Aqil. . Investigation of the Relationship Between NDVI Index, Soil Moisture, and Precipitation Data Using Satellite Images.Sustainable Agriculture Systems and Technologies (2022):(pp.314-325) [78]付建新.山西黄河流域不同土地利用类型NDVI时空变化及其对气温、降水的响应[J].水土保持研究,2023,30(03):364-372. [79]赵昕,武胜利,贺清智.2000~2019年山西省植被覆盖度时空变化特征及地形因素分析[J].甘肃农业大学学报,2024,59(02):240-249. [80]邓椿,蒋晓辉,聂桐,等.山西省植被覆盖度多因子探测特征与驱动力分析[J].环境科学与技术,2022,45(02):182-191. [81]窦永静,王让虎,付含培,等.山西省植被NDVI时空变化及驱动力研究[J].山西大学学报(自然科学版),2023,46(01):244-255.DOI:10.13451/j.sxu.ns.2021113. [82]刘纪远,匡文慧,张增祥,等. 20 世纪 80 年代末以来中国土地利用变化的基本特征与空间格局[J]. 41 地理学报, 2014, 69(01): 3-14 [83]李建飞,李小兵,周义. 2000—2015 年乌兰察布市生长季 NDVI 时空变化及其影响因素[J]. 干旱区研究, 2019, 36(05): 1238-1249. [84]Stow D., A. Petersen, A. Hope, et al. Greenness trends of Arctic tundra vegetation in the 1990s: comparison of two NDVI data sets from NOAA AVHRR systems[J]. International Journal of Remote Sensing, 2007, 28(21). [85]张月丛,赵志强,李双成,等. 基于 SPOT NDVI 的华北北部地表植被覆盖变化趋势[J]. 地理研究, 2008, (04): 745-754. [86]陈玮瑶, 孙扬, 辛朋磊. 三江源区蒸散发时空变化特征及影响因素分析[J]. 水利水电快报, 2024, 45 (01): 6-11. [87]张宇杰.山西省植被覆盖度时空演变及驱动力分析[D].西安科技大学,2022.DOI:10.27397/d.cnki.gxaku.2022.000926. [88]杨雪璐.山西省土地利用碳排放时空特征及影响因素研究[D].山西财经大学,2023.DOI:10.27283/d.cnki.gsxcc.2023.000119. [89]贾一越,齐璇璇,黄蕊,等.山西省植被覆盖度的时空变化及驱动因子[J].应用生态学报,2024,35(04):1073-1082.DOI:10.13287/j.1001-9332.202403.023. [90]解晗,同小娟,李俊,等.2000—2018年黄河流域生长季植被指数变化及其对气候因子的响应[J].生态学报,2022,42(11):4536-4549. [91]景泓元.基于Budyko模型的山西水热平衡对植被变化响应特征研究[D].北京林业大学,2022.DOI:10.26949/d.cnki.gblyu.2022.000239. [92]龙爽,郭正飞,徐粒,等.基于 Google Earth Engine的中国植被覆盖度时空变化特征分析.遥感技术与应用,2020,35(2):326-334[88]韩斌.山西省不同土地利用类型植被NDVI变化及其气候主控因子研究[D].山西农业大学,2021.DOI:10.27285/d.cnki.gsxnu.2021.000348. [93] Ma Q M,Long Y P,Jia X P,et al. Vegetation response to climatic variation and human activities on the Ordos Plateau from 2000 to 2016[J]. Environmental Earth Sciences,2019,78( 24) ,doi: 10. 1007 /s12665-019-8732-z. [94]韩斌.山西省不同土地利用类型植被NDVI变化及其气候主控因子研究[D].山西农业大学,2021.DOI:10.27285/d.cnki.gsxnu.2021.000348. [95]吴超.山西省植被覆盖时空变化及驱动因素研究[D].山西财经大学,2020.DOI:10.27283/d.cnki.gsxcc.2020.000017. [96]孙倩倩,刘超,郑蓓君.基于ICEEMDAN方法的黄土高原植被覆盖变化及其对气候变化的响应[J].应用生态学报,2021,32(06):2129-2137.DOI:10.13287/j.1001-9332.202106.011. |
开放日期: | 2024-08-18 |