论文题名(中文): | 烤烟烘烤期间关键期温度及时间对品质的影响 |
作者: | |
学号: | 2021010610 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090101 |
学科名称: | 农学 - 作物学 - 作物栽培学与耕作学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 延边大学 |
院系: | |
专业: | |
第一导师姓名: | |
第一导师学校: | |
论文完成日期: | 2024-05-09 |
论文答辩日期: | 2024-07-22 |
论文题名(外文): | The Influence of Temperature and Time during the Critical Period of Tobacco Baking on Quality |
关键词(中文): | |
关键词(外文): | Baking process Baking temperature Quality of tobacco Assessment and evaluation Appearance quality |
论文文摘(中文): |
摘 要 烟草是吉林省的重要经济作物,是农民增收的重要农作物。吉林省种植的烤烟,与国内部分烟区相比,总糖和还原糖含量相对较高,但是总氮和烟碱含量相对较低。同时,钾含量及钾氯比值也偏低,导致其化学成分不协调。吉林省的烤烟味道淡雅,香气不浓,劲头较小,感官质量不佳及配方适用性不强,主要原因是烟叶的部分大分子物质未能及时转化为能产生香味的小分子物质。本研究以吉林省主栽品种‘吉烟九号’的中部叶和上部叶为试材,在吉林省敦化市贤儒镇和通化市柳河县两大烟区进行烟叶栽培及烘烤试验,对烘烤关键时期变黄期、定色期或干筋期进行不同温度下适当延长烘烤时间处理,记录各处理烘烤工艺参数,检测烤前和烤后烟叶的化学成分,对烘烤后烟叶进行评吸鉴定和外观质量等分析,以明确改进烘烤工艺对烟叶品质的影响。研究结果如下: 1.采用常规工艺进行烘烤,两地烤烟从烤前到烤后淀粉含量均降低,降幅为26%~37%之间。总糖含量均增加,增幅为53%~63%之间。还原糖含量均增加,增幅为75%~77%。烟碱含量均降低,降幅为4%~19%。氯含量均降低,降幅为4%~40%。敦化烤烟中部叶从烤前到烤后总氮含量增加52%,蛋白质含量增加52%,钾含量降低22%;柳河烤烟中部叶从烤前到烤后总氮含量降低3%,蛋白质含量降低3%,钾含量增加11%。两地烤烟上部叶从烤前到烤后总氮含量均增加,增幅为4%~36%。蛋白质含量均增加4%。钾含量均增加,增幅为7%~21%。 2.敦化烤烟中部叶38℃延长时间处理下淀粉、总糖含量为4.36%、32.06%。42℃延长时间处理下还原糖含量为28.01%。48℃延长时间处理下总糖、还原糖含量为33.68%、27.38%。54℃延长时间处理下淀粉、总糖含量为4.11%、31.83%。柳河烤烟中部叶38℃延长时间处理下淀粉、总糖、还原糖含量为4.19%、32.89%、27.81%。42℃延长时间处理下总糖、还原糖含量为33.36%、27.41%。48℃延长时间处理下总糖、还原糖含量为32.35%、27.98%。54℃延长时间处理下淀粉、总糖含量为4.16%、33.43%。敦化烤烟上部叶38℃延长时间处理下淀粉、总糖、还原糖含量为4.59%、33.44%、26.66%。42℃延长时间处理下淀粉、总糖、还原糖含量为4.25%、33.94%、27.11%。48℃延长时间处理下淀粉、总糖、还原糖含量为4.23%、33.34%、27.54%。54℃延长时间处理下淀粉、总糖含量为4.04%、32.72%。柳河烤烟上部叶38℃延长时间处理下淀粉、总糖含量为4.37%、34.25%。42℃延长时间处理下淀粉、总糖、还原糖含量为4.34%、34.25%、27.08%。48℃延长时间处理下淀粉、总糖、还原糖含量为4.43%、33.94%、27.00%。54℃延长时间处理下淀粉、总糖、还原糖含量为4.45%、34.37%、27.53%。以上化学成分含量与常规烘烤工艺相比均具有显著性差异。两地延长烘烤期间若干温度段可以降低烤烟的淀粉和糖类等含量,使其化学成分更协调。 3.敦化中部叶38℃延长时间处理下得到的烟叶合计分值与感官分值最高,合计分值为49.50,感官分值为60.36。柳河中部叶42℃延长时间处理下得到的烟叶合计分值与感官分值最高,合计分值为51.00,感官分值为63.31。敦化上部叶48℃延长时间处理下得到的烟叶合计分值与感官分值最高,合计分值为49.50,感官分值为61.24。柳河上部叶42℃延长时间处理下得到的烟叶合计分值与感官分值最高,合计分值为50.08,感官分值为63.42。 4.敦化中部叶48℃延长时间处理下得到的烟叶外观质量合计分值最高,为45.33。柳河中部叶38℃延长时间处理下得到的烟叶外观质量合计分值最高,为48.67。敦化上部叶38℃延长时间处理下得到的烟叶外观质量合计分值最高,为47.33。柳河上部叶38℃延长时间处理下得到的烟叶外观质量合计分值最高,为50.33。 |
文摘(外文): |
Abstract Tobacco is an important economic crop in Jilin Province and an important crop for increasing farmers' income. Compared with some tobacco growing areas in China, the total sugar and reducing sugar content of tobacco grown in Jilin Province is relatively high, but the total nitrogen and nicotine content are relatively low. At the same time, the potassium content and potassium chloride ratio are also low, leading to an inconsistency in their chemical composition. The taste of roasted tobacco in Jilin Province is light and elegant, with a weak aroma, low intensity, poor sensory quality, and weak formula applicability. The main reason is that some large molecular substances in the tobacco leaves have not been timely converted into small molecular substances that can produce fragrance. This study used the middle and upper leaves of the main cultivated variety 'Jiyan No. 9' in Jilin Province as test materials, and conducted tobacco cultivation and baking experiments in two major tobacco areas, Xianru Town in Dunhua City and Liuhe County in Tonghua City. During the baking period, the key baking periods were appropriately extended, including the yellowing period, coloring period, or dry gluten period. The baking process parameters of each treatment were recorded, and the chemical composition of the tobacco leaves before and after baking was tested. The smoking identification and appearance quality analysis of the tobacco leaves after baking were conducted to clarify the impact of improving the baking process on the quality of tobacco leaves. The research results are as follows: 1.By using conventional baking techniques, the starch content of tobacco in both regions decreased from pre baking to post baking, with a decrease of 26% to 37%. The total sugar content increased by 53% to 63%. The content of reducing sugars increased by 75% to 77%. The nicotine content decreased by 4% to 19%. The chlorine content decreased by 4% to 40%. The total nitrogen content of the middle leaves of Dunhua tobacco increased by 52% from pre curing to post curing, while the protein content increased by 52% and the potassium content decreased by 22%; The total nitrogen content of the central leaves of Liuhe tobacco decreased by 3% from pre curing to post curing, while the protein content decreased by 3% and the potassium content increased by 11%. The total nitrogen content of the upper leaves of tobacco in both regions increased from pre curing to post curing, with an increase of 4% to 36%. The protein content increased by 4%. The potassium content increased by 7% to 21%. 2.The starch and total sugar content in the middle leaves of Dunhua flue-cured tobacco were 4.36% and 32.06% after prolonged treatment at 38℃. The reducing sugar content was 28.01% under prolonged treatment at 42℃. The total sugar and reducing sugar content were 33.68% and 27.38% under 48℃ extended time treatment. The starch and total sugar content were 4.11% and 31.83% under prolonged treatment at 54℃. The starch, total sugar, and reducing sugar contents in the middle leaves of Liuhe tobacco were 4.19%, 32.89%, and 27.81% under prolonged treatment at 38℃. The total sugar and reducing sugar content were 33.36% and 27.41% under extended time treatment at 42℃. The total sugar and reducing sugar content were 32.35% and 27.98% under 48℃ extended time treatment. The starch and total sugar content were 4.16% and 33.43% under prolonged treatment at 54℃. The starch, total sugar, and reducing sugar contents in the upper leaves of Dunhua tobacco were 4.59%, 33.44%, and 26.66% after prolonged treatment at 38℃. The starch, total sugar, and reducing sugar contents were 4.25%, 33.94%, and 27.11% under prolonged treatment at 42℃. The starch, total sugar, and reducing sugar contents were 4.23%, 33.34%, and 27.54% under prolonged treatment at 48℃. The starch and total sugar content were 4.04% and 32.72% under prolonged treatment at 54℃. The starch and total sugar content in the upper leaves of Liuhe flue-cured tobacco were 4.37% and 34.25%, respectively, after prolonged treatment at 38℃. The starch, total sugar, and reducing sugar contents were 4.34%, 34.25%, and 27.08% under prolonged treatment at 42℃. The starch, total sugar, and reducing sugar contents were 4.43%, 33.94%, and 27.00% under prolonged treatment at 48℃. The starch, total sugar, and reducing sugar contents were 4.45%, 34.37%, and 27.53% under prolonged treatment at 54℃. The above chemical composition content has significant differences compared to conventional baking processes.Extending the baking period between the two regions for several temperature ranges can reduce the starch and sugar content of tobacco, making its chemical composition more coordinated. 3.The total score and sensory score of tobacco leaves obtained under prolonged treatment at 38℃ in the middle of Dunhua were the highest, with a total score of 49.50 and a sensory score of 60.36. The total score and sensory score of tobacco leaves obtained under extended treatment at 42℃ in the middle of Liuhe River were the highest, with a total score of 51.00 and a sensory score of 63.31. The total score and sensory score of tobacco leaves obtained under the 48℃ extended treatment of Dunhua upper leaves were the highest, with a total score of 49.50 and a sensory score of 61.24. The total score and sensory score of tobacco leaves obtained under extended treatment at 42℃ in the upper part of Liuhe River were the highest, with a total score of 50.08 and a sensory score of 63.42. 4.The total score of appearance quality of tobacco leaves obtained under 48℃ extended time treatment in the middle of Dunhua was the highest, at 45.33. The total score of appearance quality of tobacco leaves obtained under the extended time treatment at 38℃ in the middle of Liuhe was the highest, at 48.67. The total score of appearance quality of tobacco leaves obtained under the extended treatment of Dunhua upper leaves at 38℃ was the highest, at 47.33. The total score of appearance quality of tobacco leaves obtained under the treatment of extended time at 38℃ in the upper part of Liuhe is the highest, which is 50.33. |
参考文献: |
参考文献 [1]栾倩倩. 鲜烟叶中有效成分的分离纯化研究[D]. 大连: 大连理工大学, 2019. [2]国家中医药管理局《中华本草》编委会编. 中华本草[M]. 上海: 上海科学技术出版社, 1999: 189-192. [3]马彩娟, 吴彦辉, 常建伟, 等. 上部烟叶片结构对烟叶品质和可用性的影响[J]. 中国烟草科学, 2019, 40(04): 48-55. [4]张文姬, 陈桢禄, 邹明民, 等. 烟草资源多元化开发利用潜能[J]. 广东农业科学, 2021, 48(12): 100-110. [5]李俊. 互联网时代下烟草行业卷烟营销在新零售下的改革及创新[J]. 国际公关, 2022(19): 131-133. [6]余秀娟. “大数据”背景下烟草企业统计工作供给侧结构性改革研究[J]. 中国管理信息化, 2022, 25(19): 134-136. [7]王勇. 我国烟草企业的内部管理体制改革与优化[J]. 中国集体经济, 2019(20): 52-54. [8]Howell T M, Griscik G J, Extraction and storage of tobacco constituents: U.S. Patent 8, 887, 737[P]. 2014-04-14. [9]李雨峰. 基于服务质量差距模型的四川省烟草商业公司服务质量提升研究[D]. 四川: 西南科技大学, 2024. [10]宋双.陕西省烟草白粉病生理小种鉴定及其防治研究[D].陕西:西北农林科技大学硕士学位论文, 2013. [11]杨树勋. 烟叶烘烤原理的探索与发现[J]. 作物研究, 2018, 32(3): 265-270. [12]张喜峰, 刘伟, 李东阳, 等. 陇县烟区中烟202品种上部烟叶烘烤工艺优化研究[J]. 安徽农业科学, 2020, 48(16): 178-180. [13]李传玉, 杨辉, 王玉平, 等. 不同烘烤工艺对烟叶主要质量性状的影响[J]. 贵州农业科学, 2008, 220(05): 155-157. [14]李常军, 宫长荣, 周义和, 等. 烤烟烘烤过程中变黄温度对氮素代谢的影响[J]. 中国烟草学报, 2001, 7(2): 31-35. [15]Guomin Cui, Bojun Wang,Anding Xu. Effects of Tobacco Curing on Accumulation of Chemical Components and Aroma Components in Tobaccos[J]. Agricultural Science&Technology, 2014, 15(4): 620-626. [16]崔元浩, 吴星明, 金洪石, 等. 吉林省延边地区烤烟质量评价[J]. 延边大学农学学报, 2013, 35(03): 223-228. [17]姜岩. 吉林省烤烟主推品种叶片成熟规律及烘烤工艺研究[D]. 延吉: 延边大学, 2014. [18]杨波, 张喜峰. 不同烘烤工艺对中部烟叶烘烤质量的影响[J]. 陕西农业科学, 2021, 67(11): 86-90. [19]齐娜. 烟叶烘烤过程中主要物理参数及化学物质变化动态研究[D]. 山东: 山东农业大学, 2016. [20]杨树勋. 烟叶烘烤的理论与实践[J]. 作物研究, 2020, 34(03): 297-301. [21]左天觉. 烟草的生产、生理和生物化学[M]. 上海: 上海远东出版社, 1993: 263-271. [22]肖协忠. 烟草化学[M]. 北京: 中国农业出版社, 1997: 156-162. [23]宫长荣. 烟草调剂学[M]. 北京: 中国农业出版社, 2011: 223-225. [24]Cui G M, Wang B J, Luo Y G, et al. Effect of different flue-curing techniques on the taste and aroma substances of tobacco leaves[J].Agricultural Science &Technology, 2014, 15(2): 251. [25]欧阳铖人, 杨焕文, 王戈, 等. 温度胁迫对烟叶淀粉降解和抗氧化特性的影响[J]. 云南农业大学学报(自然科学), 2020, 35(05): 804-809. [26]杨树勋. 烟叶烘烤原理及技术研究进展[J]. 作物研究, 2018, 32(06): 541-544. [27]刘要旭, 卢晓华, 蔡宪杰, 等. 烘烤湿球温度对皖南烟叶焦甜香风格的影响[J]. 中国烟草科学, 2018, 39(02): 89-95. [28]汪伯军, 江厚龙, 许安定, 等. 三段六步式烘烤工艺研究及应用初报[J]. 西南大学学报(自然科学版), 2014, 36(08): 189-193. [29]汪廷录, 杨清友, 张正选. 介绍一种“一炉双机双炕”式密集烤房. 中国烟草科学, 1982(1): 37-39. [30]李常军, 宫长荣, 陈江华, 等. 烘烤湿度条件对烟叶氮代谢的影响华北农学报, 2001, 16(2): 141-144. [31]刘腾江, 张荣春, 杨乘, 等. 不同变黄期时间对上部烟叶可用性的影响[J]. 西南农业学报, 2015, 28(01): 73-78. [32]王松峰, 王爱华, 王金亮, 等. 密集烘烤定色期升温速度对烤烟生理生化特性及品质的影响[J]. 中国烟草科学, 2012, 33(06): 48-53. [33]王伟宁, 于建军, 张腾, 等. 定色期不同升温速率对烤烟品种红花大金元烟叶品质及产值的影响[J]. 江苏农业科学, 2013, 41(02): 242-244. [34]洪天龙, 杨悦章, 程黄萍, 等. 上部烟叶一次性成熟采烤研究进展[J]. 安徽农学通报, 2020, 26(15): 140-143. [35]武圣江. 烤烟密集烘烤过程中烟叶生理和物理特性及细胞超微结构变化[J]. 2011: 12-13. [36]任仕荣. 烟叶烤青和挂灰产生原因及改进对策[J]. 安徽农学通报, 2022, 28(03) :130-131. [37]陈殿祥. 挂灰烟的成因及防范措施[J]. 农技服务, 2019, 36(06): 84-85. [38]杨尚明, 王向阳, 王一星. 微带青烟叶的形成原因及防控途径[J]. 山东农业科学, 2011(10): 111-113, 119. [39]冯繁文, 刘本福, 李富强, 等. 鄂西烟区烟叶烤青产生原因分析及预防措施[J]. 特种经济动植物, 2024, 27(03): 100-102. [40]Kurt D. Impacts of environmental variations on quality and chemical contents od oriental tobacco[J]. Contributions to Tobacco&Nicotine Research, 2021, 30(1): 50-62. [41]Soares F L, Marcelo M C, Dias J C, et al.Chemosensory aerosol assessment of key attributes for tobacco products[J]. Journal of Chemometrics, 2020, 34(12): e3297. [42]吴灵, 尹键, 柴向锋, 等. 烟草化学成分分析研究进展[J]. 株洲师范高等专科学校学报, 2002, 5(28): 19-22. [43]邱妙文, 凌寿军, 王行, 等. 不同烘烤湿度条件与烟叶淀粉含量变化关系[J]. 中国烟草科学, 2004(03): 6-8. [44]王勇, 王行, 贺广生, 等. 耐高温产淀粉酶芽孢杆菌在烟叶烘烤中降解淀粉的应用研究[J]. 中国烟草学报, 2017, 23(04): 56-63. [45]王佩. 烟叶淀粉在发育和烘烤过程中的变化规律研究[D]. 郑州: 河南农业大学, 2024. [46]张晓瑞, 刘晓晖, 付博, 等. 烟草中淀粉降解菌的筛选、鉴定及发酵工艺优化[J]. 食品与机械, 2021, 37(02): 34-41. [47]张志灵, 林海滨, 王新旺, 等. 福建烤烟淀粉含量与外观质量和感官质量的关系[J]. 中国农学通报, 2022, 38(31): 136-141. [48]张晓瑞. 烟草淀粉降解菌的筛选鉴定及发酵工艺研究[D]. 郑州: 河南农业大学, 2022. [49]Banožić M, Jokić S, Ačkar Đ, et al. Carbohydrates~Key players in tobacco aroma formation and quality determination[J]. Molecules, 2020, 25(7): 1734. [50]郭青青, 许天驰, 杨春雷, 等. 一株高效烟碱降解菌的筛选及其在烟草烘烤中的应用[J]. 安徽农业科学, 2022, 50(16): 45-49. [51]周冀衡. 烟草生理与生物化学[M]. 合肥: 中国科学技术大学出版社, 1996: 41-45. [52]王瑞新. 烟草化学[M]. 北京: 中国农业出版社, 2003: 75-79. [53]郭俊成, 苏勇, 刘强, 等. 烟草叶蛋白利用价值研究进展[J]. 中国烟草科学, 2006(01): 8-10. [54]韩锦峰. 烟草栽培生理[M]. 北京: 中国农业出版社, 2003: 9-13. [55]陈明灿, 李友军, 孔祥生, 等. 不同施钾量对烟草生育及产、质的影响[J]. 洛阳农业高等专科学校学报, 2002(04): 241-242. [56]李建峰. 不同钾效率烟草的农艺性状和钾代谢基因表达差异研究[D]. 重庆: 西南大学, 2015. [57]胡荣海, 邵岩. 云南烟草栽培学[M]. 北京: 科学出版社, 2007: 312-322. [58]赵攀攀. 豫中烟区土壤烤烟氯含量分布、相关及对烟叶品质的影响[D]. 河南: 河南农业大学, 2019. [59]许自成, 李丹丹, 毕庆文, 等. 烤烟氯含量与挥发性香气物质及感官质量的关系研究[J]. 中国烟草学报, 2008(05): 27-32. [60]李明德, 肖汉乾, 汤海涛, 等. 氯素营养对烤烟生长发育和产量、品质的影响[J]. 中国烟草学报, 2004(06): 29-32. [61]韩忠明, 李章海, 黄刚, 等. 我国主要烟区烤烟氯含量特征比较研究[J]. 贵州农业科学, 2008(01): 106-107. [62]樊立辉. 菜籽饼肥的施用对烤烟生长发育及产量品质的影响[D]. 重庆: 西南大学, 2010. [63]陈义强. 氮磷钾肥对烤烟内在品质的影响及其施肥模型[D]. 河南: 河南农业大学, 2009. [64]廖慧敏, 罗有良, 高强. 几个烤烟品种钙镁氯含量比较分析[J]. 湖南农业科学, 2007(04): 34-35. [65]陈黛, 凌寿军, 付鑫钟. 贫氯地区增施氯肥对烟叶产质量的影响[J]. 烟草科技, 2003(08): 37-38+48. [66]刘宇, 颜合洪. 烟草致香物质的研究进展[J]. 作物研究, 2006, (5): 470-474. [67]虞蛟, 吴勇, 陈宗屏. 不同变黄温度与湿度对烤烟吸食品质的影响[J]. 贵州农业科学, 2007, 35(4): 50-51. [68]刘国顾. 烟草栽培学[M]. 北京: 中国农业出版社, 2003:147-151. [69]郭鸿雁, 田俊岭, 周天宇, 等. 烟叶外观和评吸质量特征与化学成分间的关系研究[J]. 化工管理, 2023(32): 38-40. [70]王欣. 湖北烟区烤烟质量综合评价及与国内外优质烤烟的差异分析[D]. 河南: 河南农业大学, 2009. [71]邓小华. 湖南烤烟区域特征及质量评价指标间关系研究[D]. 湖南: 湖南农业大学, 2008. [72]黄清芬, 张延军. 烟叶评吸质量与外观质量的相关性分析[J]. 江西农业学报, 2011, 23(11): 89-90. [73]王竞, 顾毓敏, 徐天养, 等. 烤烟外观质量与其感官评吸质量关系研究[J]. 安徽农业科学, 2018, 46(03): 131-133. [74]马彩娟, 吴彦辉, 常建伟, 等. 上部烟叶片结构对烟叶品质和可用性的影响[J]. 中国烟草科学, 2019, 40(04): 48-55. [75]张文姬, 陈桢禄, 邹明民, 等. 烟草资源多元化开发利用潜能[J]. 广东农业科学, 2021, 48(12): 100-110. [76]谢鹏飞, 邓小华, 曾中, 等. 密集烘烤关键温度点湿度控制对烤烟理化性状的影响[J]. 天津农业科学, 2012, 18(05): 95-99. [77]詹军, 武圣江, 贺帆, 等. 密集烘烤干筋期温湿度对上部烟叶外观质量和内在品质的影响[J]. 甘肃农业大学学报, 2011, 46(06): 29-35. [78]邓小华, 曾中, 谢鹏飞, 等. 密集烘烤关键温度点不同湿度控制烤烟主要化学成分的动态变化[J]. 中国农学通报, 2013, 29(06): 213-216. [79]詹军, 宫长荣, 李伟, 等. 密集烘烤干筋期干球和湿球温度对烟叶香气质量的影响[J]. 湖南农业大学学报(自然科学版), 2011, 37(05): 484-489. [80]王娟, 王帆, 张鸽, 等. 烤烟烟叶淀粉含量5种测定方法的比较[J]. 分子植物育种, 2019 ,17(05): 1673-1678. [81]许永, 李超, 杨乾栩, 等. 连续流动法测定烟草中总糖、还原糖、氯、钾含量的不确定度评定[J]. 食品与机械, 2017, 33(12): 61-64+75. [82]黄远丽, 温文娟, 黄伟乾. 杜马斯燃烧法与凯氏定氮法测定烟草中总氮含量的比较研究[J]. 广东化工, 2019, 46(07): 199-200. [83]朱泽华, 刘建琳, 张建霞, 等. 分光光度法测定总烟碱和尼古丁[J]. 环境与健康杂志, 1997, (05): 40-42. [84]刘智强, 赵正雄. 烤烟全钾含量测定方法研究[J]. 中国农学通报, 2020, 36(15): 147-151. [85]高岩, 高玉珍. 莫尔法测定烟叶氯含量的前处理方法改进试验[J]. 商场现代化, 2005, (03): 158-159. [86]王彦亭, 谢剑平, 李志宏. 中国烟草种植区划[M]. 北京: 科学出版社, 2010.01. [87]刘天择, 杨菁, 汪旭, 等. 不同部位烤烟化学成分及热解产物与加热卷烟感官质量的关系[J]. 中国烟草科学, 2023, 44(1): 77-84. [88]王彦亭, 谢剑平, 李志宏, 等. 中国烟草种植区划[M]. 北京: 科学出版社, 2010: 242-243. [89]黄维, 崔国民, 赵高坤. 不同成熟度烟叶在烘烤过程中主要挥发性香气成分的变化[J]. 中国农学通报, 2010, 26(24): 149-152. [90]王岚, 王璐, 廖臻, 等. 气质联用仪对烤烟烘烤调制过程中烟叶主要致香成分变化的研究[J]. 分析测试学报, 2008(S1): 96-98. [91]赵会纳, 蔡凯, 雷波, 等. 烤烟中性致香物质在烘烤前后的差异分析[J]. 中国烟草科学, 2015, 36(02): 8-13. [92]宫长荣, 王爱华, 王松峰. 烟叶烘烤过程中多酚类物质的变化及与化学成分的相关分析[J]. 中国农业科学, 2005(11): 173-177. [93]赵会纳, 雷波, 丁福章, 等. 干燥方式对烟叶样品干物质量、颜色和化学成分的影响[J]. 中国烟草学报, 2014, 20(04): 28-32+36. [94]杨立均, 宫长荣, 陈江华, 等. 烘烤过程中烟叶淀粉含量及烤后化学成分分析[J]. 河南农业大学学报, 2001(02): 152-155. [95]刘智炫, 周清明, 黎娟, 等. 湖南烟区中部叶化学成分比较及聚类分析[J]. 中国农学通报, 2015, 31(25): 24-29. [96]方志颖, 李虎林, 林凤敏, 等. 烘烤过程中延长变黄和定色时间对烤后烟叶化学成分含量的影响[J]. 延边大学农学学报, 2011, 33(04): 286-289. [97]段史江, 朱红根, 彭桃军, 等. 密集烘烤关键温度点不同稳温时间对烤后烟叶品质的影响[J]. 湖南农业科学, 2014(17): 57-58+60. [98]王涛, 毛岚, 范宁波, 等. 密集烘烤变黄期和定色期关键温度点延长时间对上部烟叶质量的影响[J]. 天津农业科学, 2021, 27(02): 6-10. [99]蔡翼杨, 宋锡军, 肖慈平, 等. 豫烟11号烘烤关键温度点配套技术研究[J]. 现代农业研究, 2020, 26(03): 138-140. [100]艾复清, 李改珍, 付磐石, 等. 环境对烤烟变黄阶段上部叶主要化学成分的影响[J]. 安徽农业科学, 2005(07): 1228-1231. [101]马力, 樊军辉, 黄克久, 等. 密集烘烤关键温度点不同稳温时间对烟叶香气物质和评吸质量的影响[J]. 江苏农业科学, 2011, 39(04): 326-329. [102]宋晓华, 刘国顺, 付劭怡, 等. 烘烤过程中拉长变黄和定色时间对烤烟中性致香成分含量的影响[J]. 浙江农业学报, 2010, 22(02): 249-252. [103]金洪石, 金江华, 张勇德, 等. 不同烘烤工艺对延边烤烟化学成分和香气质量的影响[J]. 延边大学农学学报, 2013, 35(03): 200-205. [104]沈利臣, 卢晓华, 刘元德, 等. 不同烟区烟叶外观质量与其感官评吸质量的关系分析[J]. 安徽农学通报, 2019, 25(17): 34-37. |
开放日期: | 2024-08-18 |