- 无标题文档
查看论文信息

论文题名(中文):

 太赫兹超材料中线偏振和圆偏振波反射和透射性质的研究    

作者:

 徐东延    

学号:

 2021010026    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070207    

学科名称:

 理学 - 物理学 - 光学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 延边大学    

院系:

 理学院    

专业:

 物理学    

第一导师姓名:

 金星日    

第一导师学校:

 延边大学    

论文完成日期:

 2024-05-20    

论文答辩日期:

 2024-07-30    

论文题名(外文):

 reflection transmission properties of linearly polarized and circularly polarized waves in terahertz metamaterials    

关键词(中文):

 超材料 太赫兹 非对称反射 非对称透射 单向无反射    

关键词(外文):

 Metamaterial Terahertz Asymmetric reflection Asymmetric transmission Unidirectional reflectionless    

论文文摘(中文):

随着科学的进步和发展,对信息的传输效率和传输质量的要求日益增高。因 此,高频段的开发成为人们关注的焦点。太赫兹波处于微波频段和红外频段之间, 具有强穿透性、高宽带和强相干性等特性。近年来,太赫兹超材料器件逐渐成为 医学成像、环境监测、天文观测和军事等领域的研究热点。通过人工设计具有亚 波长尺度的周期性材料可以实现对电磁波的操控,例如,单向无反射,非对称透射 和非对称反射等。这些现象在光二极管、滤波器和偏振转化器等应用中有着重要 的实用价值和研究意义。 我们提出两个方案研究了在太赫兹频段下的非对称透射、非对称反射和单向 无反射等。主要研究内容如下:

(1)利用不同弧长的双层铝环结构分别研究了单向无反射、非对称反射和非 对称透射现象。当 x 和 y 偏振波入射时,该结构实现了单向无反射和非对称透射 现象。同时,该结构实现了在透射和反射模式下的线到圆偏振转换。当圆偏振波 入射时,该结构不仅出现明显的单向无反射和非对称透射现象,而且改变入射角 时出现非对称透射现象。此外,在宽范围的入射角度 θ、共振器间距 t 和圆环旋转 角度 O 内,该结构实现了非对称反射和单向无反射现象。

(2)基于双层 H 型共振器研究了太赫兹波段温度可控的单向无反射、非对称 透射和非对称反射现象。研究表明:当上下两层的各向异性结构错开一定的角度 时,可分别实现线偏振波的非对称透射,非对称反射和单向无反射。同时,该方案 也可以实现圆偏振波的非对称反射和偏振转换。另外,利用温度变化调控二氧化 钒电导率,可使入射的线偏振和圆偏振波实现可控的单向无反射、非对称透射和非对称反射。

文摘(外文):

With the progress and development of science, the demand for information transmission efficiency and transmission quality is increasing day by day, so the development of high frequency band has become the focus of attention. Terahertz waves are located between the microwave frequency band and the infrared frequency band, and have the characteristics of strong penetration, high broadband and strong coherence. In recent years, terahertz metamaterial devices have gradually become a research hotspot in medical imaging, environmental monitoring, astronomical observation and military fields. By artificially designing periodic materials with sub-wavelength scales, terahertz metamaterial devices with different functions can be obtained, such as unidirectional reflectionless, asymmetric transmission and asymmetric reflection. These phenomena have important practical value and research significance in the applications of photodiodes, filters and polarization converters. We propose two schemes to study the asymmetric transmission, asymmetric reflection and unidirectional reflectionless in the terahertz frequency band. The main research contents are as follows:

(1)The phenomena of unidirectional reflectionless, asymmetric reflection and asymmetric transmission were studied by using the double-layer aluminum ring structures with different arc lengths. When x and y polarized waves are incident, the structure realizes unidirectional reflectionless and asymmetric transmission phenomenon. At the same time, the structure realizes linear to circular polarization conversion in transmission and reflection modes. When the circularly polarized wave is incident, the structure not only shows obvious unidirectional reflectionless and asymmetric transmission phenomenon, but also shows asymmetric transmission phenomenon when the incident Angle is changed. In addition, when the incidence angle θ, the distance between the two resonators t and the rotation angle of the arc O are changed, the structure can achieve stable asymmetric reflection and unidirectional reflectionless phenomenon.

(2)The phenomena of temperature controllable unidirectional reflectionless, asymmetric transmission and asymmetric reflection in terahertz band are studied based on a double-layer H-type resonator. The results show that when the anisotropic structures of the upper and lower layers are staggered at a certain Angle, the asymmetric transmission, asymmetric reflection and unidirectional reflectionless of linearly polarized waves can be realized respectively. At the same time, the scheme can also realize the asymmetric reflection and polarization conversion of circularly polarized waves. In addition, by adjusting the vanadium dioxide conductivity with the change of temperature, the incident linearly polarized and circularly polarized waves can realize the switchable unidirectional reflectionless, asymmetric transmission and asymmetric reflection.

参考文献:
[1] Qin J, Xie L, Ying Y. Feasibility of terahertz time-domain spectroscopy to detect tetracyclines hydrochloride in infant milk powder[J]. Analytical Chemistry, 2014, 86(23): 11750-11757
[2] Al-Douseri F M, Chen Y, Zhang X C. THz wave sensing for petroleum industrial applications[J]. International Journal of Infrared and Millimeter Waves, 2006, 27: 481-503
[3] Sun Y, Zhu Z, Chen S, et al. Observing the temperature dependent transition of the GP2 peptide using terahertz spectroscopy[J]. PloS One, 2012, 7(11): e50306(8)
[4] Tassin P, Koschny T, Soukoulis C M. Graphene for terahertz applications[J]. Science, 2013, 341(6146): 620-621
[5] Zhong M, Jiang X, Zhu X, et al. Design and fabrication of a single metal layer tunable metamaterial absorber in THz range[J]. Optics & Laser Technology, 2020, 125: 106023(7)
[6] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3): 148-151
[7] Houard A, Liu Y, Prade B, et al. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field[J]. Physical Review Letters, 2008, 100(25): 255006(4)
[8] Sun Y, Du P, Lu X, et al. Quantitative characterization of bovine serum albumin thinfilms using terahertz spectroscopy and machine learning methods[J]. Biomedical Optics Express, 2018, 9(7): 2917-2929
[9] Qin J, Xie L, Ying Y. Determination of tetracycline hydrochloride by terahertz spectroscopy with PLSR model[J]. Food Chemistry, 2015, 170: 415-422
[10] Yan X, Yang M, Zhang Z, et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells[J]. Biosensors and Bioelectronics, 2019, 126: 485-492
[11] Janneh M, De Marcellis A, Palange E, et al. Design of a metasurface-based dualband Terahertz perfect absorber with very high Q-factors for sensing applications[J]. Optics Communications, 2018, 416: 152-159
[12] Banerjee S, Amith C S, Kumar D, et al. Ultra-thin subwavelength film sensing through the excitation of dark modes in THz metasurfaces[J]. Optics Communications, 2019, 453: 124366(7)
[13] Walther M, Fischer B M, Ortner A, et al. Chemical sensing and imaging with pulsed terahertz radiation[J]. Analytical and Bioanalytical Chemistry, 2010, 397: 1009-1017
[14] Waters JW, Froidevaux L, Harwood R S, et al. The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1075-1092
[15] Appleby R, Wallace H B. Standoff detection of weapons and contraband in the 100 GHz to 1 THz region[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2944-2956
[16] Kovalovs A, Barkanov E, Gluhihs S. Active control of structures using macro-fiber composite (MFC)[C]. Journal of Physics: Conference Series. IOP Publishing, 2007, 93(1): 012034(7)
[17] Koschny T, Kafesaki M, Economou E N, et al. Effective medium theory of lefthanded materials[J]. Physical Review Letters, 2004, 93(10): 107402(4)
[18] Bliokh K Y, Bliokh Y P. What are the left-handed media and what is interesting about them?[J]. Physics-Uspekhi, 2004, 47(4): 393(21)
[19] Zhou J, Economon E N, Koschny T, et al. Unifying approach to left-handed material design[J]. Optics Letters, 2006, 31(24): 3620-3622
[20] Fredkin D R, Ron A. Effectively left-handed (negative index) composite material[J]. Applied Physics Letters, 2002, 81(10): 1753-1755
[21] Zhao L C. Kinds of vector solitons for electromagnetic wave propagation in nonlinear left-handed materials[J]. Results in Physics, 2012, 2: 203-206
[22] Rahman S U, Cao Q, Khan Z, et al. High gain, low radar crosssection, and left hand circularly polarized antenna array based on metamaterial inspired elements[J]. Microwave and Optical Technology Letters, 2021, 63(5): 1507-1513
[23] David R S. Negative refractive index in left-handed materials[J]. Physical Review Letters, 2000, 85(14): 2933-2936
[24] Pendry J B, Holden A J, Stewart W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776
[25] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084
[26] Zolla F, Guenneau S, Nicolet A, et al. Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect[J]. Optics Letters, 2007, 32(9): 1069-1071
[27] Al-badri K S L. Multi band metamaterials absorber for stealth applications[J]. Law, State and Telecommunications Review, 2019, 11(1): 133-144
[28] Otomori M, Yamada T, Izui K, et al. Topology optimization of hyperbolic metamaterials for an optical hyperlens[J]. Structural and Multidisciplinary Optimization, 2017, 55: 913-923
[29] Aydin K, Bulu I, Ozbay E. Subwavelength resolution with a negative-index metamaterial superlens[J]. Applied Physics Letters, 2007, 90(25): 254102(3)
[30] Zhu J, Eleftheriades G V. A compact transmission-line metamaterial antenna with extended bandwidth[J]. IEEE Antennas and Wireless Propagation Letters, 2008, 8: 295-298
[31] Dong Y, Itoh T. Metamaterial-based antennas[J]. Proceedings of The IEEE, 2012, 100(7): 2271-2285
[32] Hunt J, Driscoll T, Mrozack A, et al. Metamaterial apertures for computational imaging[J]. Science, 2013, 339(6117): 310-313
[33] Mittleman D M. Twenty years of terahertz imaging[J]. Optics Express, 2018, 26(8): 9417-9431
[34] Dai T, Zhao F, Zhang C, et al. Terahertz multi-band unidirectional reflectionless phenomenon in a MIM plasmonic waveguide system based on near-field coupling[J]. Journal of Nonlinear Optical Physics & Materials, 2019, 28(01): 1950008(11)
[35] Wu N, Zhang C, Jin X R, et al. Unidirectional reflectionless phenomena in a nonHermitian quantum system of quantum dots coupled to a plasmonic waveguide[J]. Optics Express, 2018, 26(4): 3839-3849
[36] Yu L, Yang H, Liu Y M, et al. Theoretical investigation of a controlled unidirectional reflectionlessness by applying external voltage in an electro-optical plasmonic waveguide system[J]. Optics Express, 2020, 28(16): 24069-24078
[37] Zhang C, Bai R, Gu X, et al. Dual-band unidirectional reflectionless phenomena in an ultracompact non-Hermitian plasmonic waveguide system based on near-field coupling[J]. Optics Express, 2017, 25(20): 24281-24289
[38] Gu X, Bai R, Jin X R, et al. Ultra-narrow-band perfect absorber based on high-order plasmonic resonance in metamaterial[J]. Journal of Nonlinear Optical Physics & Materials, 2016, 25(01): 1650011(7)
[39] Bai R, Zhang C, Gu X, et al. Switching the unidirectional reflectionlessness by polarization in non-ideal PT metamaterial based on the phase coupling[J]. Scientific Reports, 2017, 7(1): 10742(8)
[40] Gu X, Bai R, Zhang C, et al. Unidirectional reflectionless propagation in a non-ideal parity-time metasurface based on far field coupling[J]. Optics Express, 2017, 25(10): 11778-11787
[41] Han G, Bai R, Jin X, et al. Dual-band unidirectional reflectionless propagation in metamaterial based on two circular-hole resonators[J]. Materials, 2018, 11(12): 2353(9)
[42] Yin H, Bai R, Gu X, et al. Unidirectional reflectionless propagation in non-Hermitian metamaterial based on phase coupling between two resonators[J]. Optics Communications, 2018, 414: 172-176
[43] Liu Y M, Yu L, Jin X R, et al. Highly-dispersive unidirectional reflectionless phenomenon based on high-order plasmon resonance in metamaterials[J]. Optics Express, 2019, 27(21): 30589-30596
[44] Bai R, Liu S, Jin X R. Polarization-indepentant multi-band unidirectional reflectionless propagation in non-Hermitian metamaterial[J]. International Journal of Modern Physics B, 2020, 34(30): 2050295(9)
[45] Yin F, Zhang Y Q, Jin X R. Manipulation of unidirectional reflectionlessness and asymmetric transmissionlessness in terahertz metamaterials[J]. Optics Communications, 2023, 533: 129309(7)
[46] Xue W, He Z, Cui W, et al. Unidirectional reflectionless propagation of near-infrared light in heterogeneous metamaterials[J]. Physica E: Low-dimensional Systems and Nanostructures, 2023, 147: 115593(7)
[47] Bai R, Zhang C, Gu X, et al. Unidirectional reflectionlessness and perfect nonreciprocal absorption in stacked asymmetric metamaterial based on near-field coupling[J]. Applied Physics Express, 2017, 10(11): 112001(4)
[48] Bai R, Jin X R, Zhang Y Q, et al. Narrow-dual-band perfect absorption plasmonic sensor in metamaterials based on the coupling of two resonators[J]. Journal of Nonlinear Optical Physics & Materials, 2016, 25(03): 1650027(12)
[49] Lv Y, Xu D, Yin F, et al. A versatile meta-device for linearly polarized waves in terahertz region[J]. Physica Scripta, 2024, 99(2): 025517(11)
[50] Tao X, Qi L, Yang J, et al. Experimental verification of a broadband asymmetric transmission metamaterial in the terahertz region[J]. RSC Advances, 2020, 10(11): 6179-6184
[51] Bokhari S H A, Cheema H M. Broadband asymmetric transmission via angleinduced chirality enhancement in split ring resonators[J]. Journal of Applied Physics, 2020, 128(6) 063102(11)
[52] Bokhari S H A, Cheema H M. A bilayered, broadband, angularly robust chiral metasurface for asymmetric transmission[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 20(1): 23-27
[53] Zhang P, Leng Q, Kan Y, et al. Asymmetric transmission of linearly polarized waves based on chiral metamaterials[J]. Optics Communications, 2022, 517: 128321(6)
[54] Xu J, Li R, Wang S, et al. Ultra-broadband linear polarization converter based on anisotropic metasurface[J]. Optics Express, 2018, 26(20): 26235-26241
[55] Zheng Q, Guo C, Yuan P, et al. Wideband and high-efficiency reflective polarization conversion metasurface based on anisotropic metamaterials[J]. Journal of Electronic Materials, 2018, 47: 2658-2666
[56] Khan M I, Khalid Z, Tahir F A. Linear and circular-polarization conversion in X-band using anisotropic metasurface[J]. Scientific Reports, 2019, 9(1): 4552(11)
[57] Ahmed F, Khan M I, Tahir F A. A multifunctional polarization transforming metasurface for C-, X-, and K-band applications[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(11): 2186-2190
[58] Qi Y, Zhang B, Liu C, et al. Ultra-broadband polarization conversion meta-surface and its application in polarization converter and RCS reduction[J]. IEEE Access, 2020, 8: 116675-116684
[59] Aisha S, Ismail Khan M, Chen Y, et al. An efficient chiral polarization rotator with asymmetric transmission for large incidence angles[J]. Journal of Applied Physics, 2020, 128(21): 213102(10)
[60] Zhang H, Yang C, Liu M, et al. Dual-function tuneable asymmetric transmission and polarization converter in terahertz region[J]. Results in Physics, 2021, 25: 104242(10)
[61] Lv T, Li Y, Qin C, et al. Versatile polarization manipulation in vanadium dioxideintegrated terahertz metamaterial[J]. Optics Express, 2022, 30(4): 5439-5449
[62] Lin B Q, Guo J X, Chu P, et al. Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface[J]. Physical Review Applied, 2018, 9(2): 024038(10)
[63] Ji R, Wang S W, Liu X, et al. Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities[J]. Nanoscale, 2016, 8(15): 8189-8194
[64] Cheng Y, Fan J, Luo H, et al. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial[J]. IEEE Access, 2019, 8: 7615-7621
[65] Yang S, Liu Z, Yang H, et al. Intrinsic chirality and multispectral spinselective transmission in folded etashaped metamaterials[J]. Advanced Optical Materials, 2020, 8(4): 1901448(8)
[66] Asgari S, Rahmanzadeh M. Tunable circular conversion dichroism and asymmetric transmission of terahertz graphene metasurface composed of split rings[J]. Optics Communications, 2020, 456: 124623(5)
[67] Cheng Y, Wang J. Tunable terahertz circular polarization convertor based on graphene metamaterial[J]. Diamond and Related Materials, 2021, 119: 108559(7)
[68] Cheng Y, Yu J, Li X. Tri-band high-efficiency circular polarization convertor based on double-split-ring resonator structures[J]. Applied Physics B, 2022, 128(1): 1(8)
[69] Fang B, Feng D, Chen P, et al. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region[J]. Frontiers of Physics, 2022, 17(5): 53502(8)
[70] Lin B, Guo J, Lv L, et al. Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves[J]. Applied Physics A, 2019, 125: 1-8
[71] Zhang M, Dong P, Wang Y, et al. Tunable terahertz wavefront modulation based on phase change materials embedded in metasurface[J]. Nanomaterials, 2022, 12(20): 3592(14)
[72] Wu X, Meng Y, Wang L, et al. Anisotropic metasurface with near-unity circular polarization conversion[J]. Applied Physics Letters, 2016, 108(18) 183502(5)
[73] Fei P, Vandenbosch G A E, Guo W, et al. Versatile crosspolarization conversion chiral metasurface for linear and circular polarizations[J]. Advanced Optical Materials, 2020, 8(13): 2000194(10)
[74] Li Z Y, Li S J, Han B W, et al. Quadband transmissive metasurface with linear to dualcircular polarization conversion simultaneously[J]. Advanced Theory and Simulations, 2021, 4(8): 2100117(9)
[75] Zhao Y, Yang R, Wang Y, et al. VO 2-assisted multifunctional metamaterial for polarization conversion and asymmetric transmission[J]. Optics Express, 2022, 30(15): 27407-27417
[76] He J, Zhu Q, Zhou Y, et al. Lightweight switchable bifunctional metasurface based on VO2: High-efficiency absorption and ultra-wideband circular polarization conversion[J]. Optik, 2022, 257: 168837(10)
[77] Yang J, Guo Y, Pan W, et al. Conceptual radar trap model realized via polarization conversion metasurface[J]. Optics Express, 2022, 30(2): 1936-1949
[78] Yin F, Lv Y, Xu D, et al. Multi-functional device: manipulating linear and circularpolarization conversion in a terahertz chiral metamaterial[J]. Optics Express, 2023, 31(17): 27171-27182
[79] Ackson J D. Classical Electrodynamics[J]. Physics Today, 1975, 15(11).
[80] Facco E, d’Errico M, Rodriguez A, et al. Estimating the intrinsic dimension of datasets by a minimal neighborhood information[J]. Scientific Reports, 2017, 7(1): 12140(8)
[81] Liu H, Lu J, Wang X R. Metamaterials based on the phase transition of VO2[J]. Nanotechnology, 2017, 29(2): 024002
[82] Deinert J C, Alcaraz Iranzo D, Pérez R, et al. Grating-graphene metamaterial as a platform for terahertz nonlinear photonics[J]. ACS Nano, 2020, 15(1): 1145-1154
[83] Kang Q, Li D, Guo K, et al. Tunable thermal camouflage based on GST plasmonic metamaterial[J]. Nanomaterials, 2021, 11(2): 260(12)
[84] Tian X, Li Z Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials[J]. Photonics Research, 2016, 4(4): 146-152
[85] Gong D, Mei J, Li N, et al. Tunable metamaterial absorber based on VO2-
graphene[J]. Materials Research Express, 2022, 9(11): 115803(10)
[86] Lv F, Wang L, Xiao Z, et al. Asymmetric transmission polarization conversion of chiral metamaterials with controllable switches based on VO2[J]. Optical Materials, 2021, 114: 110667(6)
[87] Song S, Ma X, Pu M, et al. Tunable multiband polarization conversion and manipulation in vanadium dioxide-based asymmetric chiral metamaterial[J]. Applied Physics Express, 2018, 11(4): 042004(4)
[88] Ren Y, Zhou T, Jiang C, et al. Thermally switching between perfect absorber and asymmetric transmission in vanadium dioxide-assisted metamaterials[J]. Optics Express, 2021, 29(5): 7666-7679
[89] Wang T, Zhang H, Zhang Y, et al. Tunable bifunctional terahertz metamaterial device based on Dirac semimetals and vanadium dioxide[J]. Optics Express, 2020, 28(12): 17434-17448
[90] Liu M, Xu Q, Chen X, et al. Temperature-controlled asymmetric transmission of electromagnetic waves[J]. Scientific Reports, 2019, 9(1): 4097(9)
[91] Ding F, Zhong S, Bozhevolnyi S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J]. Advanced Optical Materials, 2018, 6(9): 1701204(8)
[92] Peng Z, Zheng Z, Yu Z, et al. Broadband absorption and polarization conversion switchable terahertz metamaterial device based on vanadium dioxide[J]. Optics & Laser Technology, 2023, 157: 108723(9)
[93] Song Z, Zhang J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 2020, 28(8): 12487-12497






开放日期:

 2024-08-16    

无标题文档