论文题名(中文): | MSTN基因缺失影响猪跟腱及心脏的胶原蛋白表达 |
作者: | |
学号: | 2193609111 |
保密级别: | 公开 |
论文语种: | eng |
学科代码: | 090501 |
学科名称: | 农学 - 畜牧学 - 动物遗传育种与繁殖 |
学生类型: | 博士 |
学位: | 农学博士 |
学校: | 延边大学 |
院系: | |
专业: | |
第一导师姓名: | |
第一导师学校: | |
论文完成日期: | 2022-12-07 |
论文答辩日期: | 2022-12-07 |
论文题名(外文): | MSTN DEFICIENCY AFFECTS COLLAGEN EXPRESSION IN TENDON AND HEART OF PIG |
关键词(中文): | |
关键词(外文): | |
论文文摘(中文): |
研究背景:细胞外基质(ECM)是一个由非细胞成分组成的大型网络结构,包裹、支撑并维持体内组织和器官的相应结构。ECM不仅为组织和器官提供结构支撑,还通过协助细胞附着和与邻近细胞交流,为组织形态发生、分化和同源性提供生化和生物力学支持。然而,ECM的病理性积累可以引起细胞纤维化,进而导致器官和组织的功能衰竭。有很多种TGF-β超家族成员都参与了各种器官和组织的细胞外基质的调控,比如TGF-βs家族(TGF-β 1,2,3), BMPs 家族(BMP2, 4,6和7)和GDFs 家族(GDF2, 8和11)。其中,TGF-β家族是调节成纤维细胞活性和胶原蛋白表达的重要细胞因子。近年来,由于肌生长抑制素(MSTN)与TGF-β共享相同的跨膜受体和胞内信号通路,人们对其在调节成纤维细胞中的作用越来越感兴趣。作为TGF-β超家族的成员之一,肌生长抑制素(MSTN)可以负调控肌肉的生长发育。此外,最近的研究表明,肌生成抑制素可以直接调节骨骼肌成纤维细胞的胶原蛋白表达。然而,在跟腱和心脏组织中,肌生成抑制素的是否具有促纤维化的作用仍有待阐明。随着基因修饰的发展,利用猪作为大型动物模型,科学家们在生物医学研究方面取得了许多令人瞩目的成就。由于在器官大小、器官解剖学和同源性方面与人类相似,猪被认为是首选的非啮齿动物模型。因此,本研究以MSTN基因缺失猪作为动物模型,探索MSTN基因缺失对肌腱和心脏的影响。 1、PCR-RFLP方法在MSTN基因缺失猪后代的基因型鉴定中的应用 在之前的研究中,我们已经使用转录激活因子效应物核酸酶(TALEN)和体细胞核转移(SCNT)技术来生产MSTN 基因敲除猪。在目前的研究中,我们试图通过这些MSTN敲除猪与野生型(WT)猪交配生产MSTN突变猪。基因修饰动物的子代一般通过基因测序的方式进行基因型鉴定,这种鉴定方式价格昂贵且耗时。为了克服这个问题,我们开发了限制性内切酶介导的PCR-RFLP检测MSTN 基因缺失猪基因分型的方法。在此过程中,根据MSTN基因缺失猪的突变序列推导出保守寡核苷酸引物和酶切位点。利用PCR技术扩增纯合子MSTN突变体(MSTN-/-)、杂合子MSTN突变体(MSTN+/-)和WT猪的MSTN基因,产生一条长度为167 bp片段。经过BstNI酶处理后,MSTN+/-样品产生两个片段,分别在167bp和86 bp位置,WT样品仅在86 bp的位置上有一个条带。由于MSTN-/-样品中MSTN基因转录本不受BstNI酶的作用,仅在167 bp的位置上形成条带。因此,我们可以使用BstNI限制性内切酶介导的PCR-RFLP方法确定所有猪的基因型。总而言之,本研究为建立了一种简单、快速的PCR-RFLP基因分型方法,用于MSTN 基因缺失猪育种过程中仔猪基因型的鉴定。 2、MSTN基因缺失降低肌腱中的胶原蛋白表达,导致猪踮脚站立 本研究选取2日龄雄性36头MSTN-/-和30头WT猪,用于研究MSTN基因在肌腱生长发育中的作用。研究发现MSTN-/-猪中有69.4%的猪出现一种与肌腱胶原蛋白相关的踮脚站立的病理特征,而WT猪未发现这种病理特征。与WT猪相比,MSTN-/-猪的肌腱与体重比值显著降低(p<0.05)。MSTN-/-肌腱的卷曲长度显著长于野生型猪(p<0.05)。在肌腱中检测了MSTN和受体(ACVRIIB)的表达。MSTN-/-猪体肌腱中I型胶原(Col1A)(p<0.05)和巩膜炎因子(Scleraxis, Scx)(p<0.05)表达水平明显低于WT猪,而cyclin依赖性激酶抑制剂1(p21)表达水平较高(p<0.05)。且MSTN-/-肌腱中Smad2/3的磷酸化水平明显低于WT(p<0.05)。体外实验结果显示:MSTN处理显著增加了肌腱成纤维细胞中Smad2/3的磷酸化(p<0.05);此外,MSTN处理增加Col1A(p<0.05)和Scx的表达(p<0.01),降低p21的表达(p<0.001);并且MSTN处理后成纤维细胞增殖能力显著提升(p<0.05)。结果表明,MSTN可调节肌腱成纤维细胞中胶原蛋白的表达和细胞增殖;且MSTN基因缺失导致MSTN-/-猪发生胶原相关的病理性踮脚站立。 3、MSTN基因缺失降低猪心脏胶原蛋白表达 本研究选取6月龄的雄性MSTN-/-和WT猪(各3头)用于研究MSTN基因缺失对心脏ECM的影响及其潜在机制。并通过MSTN活性蛋白体外处理心脏成纤维细胞,研究MSTN对胶原蛋白表达的影响。在WT心脏中检测到MSTN蛋白,而在MSTN-/-心脏中未检测到MSTN蛋白的表达。与WT猪相比,MSTN-/-猪的心重比显著降低(p<0.05)。天狼猩红染色(p<0.01)、免疫荧光染色(p<0.01)和超显微结构检查(p<0.001)等形态学分析结果显示,与WT相比,MSTN-/-心脏结缔组织含量显著减少。与WT猪相比,MSTN-/-猪的心脏中羟脯氨酸含量(p<0.01),I型胶原蛋白(Col1A)含量(p<0.05)及p-Smad3/Smad3水平(p<0.05)显著降低。外源性MSTN蛋白处理可显著提高心脏成纤维细胞中Col1A的表达量(p<0.05),并激活细胞Smad(p<0.05)和AKT(p<0.05)信号通路,与体外研究结果相一致。 结论:本研究首次建立了MSTN 基因缺失猪的PCR-RFLP鉴定方法,并将其应用于MSTN 基因缺失猪的育种中。借助MSTN基因缺失猪的动物模型,本研究证实了MSTN可以通过调节肌腱和心脏的Smad信号直接调节ECM含量。 |
文摘(外文): |
Background: The extracellular matrix (ECM) is a large network of non-cellular components that surround, support, and give the structure of all tissues and organs in the body. The ECM provides not only structural support for tissues and organs but also provides biochemical and biomechanical support for tissue morphogenesis, differentiation and homeostasis by assisting cells to attach to and communicate with nearby cells. However, pathologic accumulation of the ECM causes fibrosis, which leads to a functional failure of the organs and tissues. Variety of TGF-β superfamily members such as TGF-βs (TGF-β1, 2, and 3), BMPs (BMP2, 4, 6, and 7), and GDFs (GDF2, 8, and 11) are known to participate in regulating extracellular matrix in various organs and tissues. Among them, TGF-β is the well-known cytokine that regulates fibroblast activity and collagen expression. Recently, there is growing interest in the role of myostatin (MSTN) in regulating fibroblast since it shares the same transmembrane receptors and intracellular signaling pathway with TGF-β. MSTN is a member of the TGF-β superfamily and negatively regulates muscle growth. Moreover, recent studies revealed that MSTN directly regulates the collagen expression of skeletal muscle fibroblasts. However, the profibrotic role of MSTN in other organs and tissues is unclear and requires more study. With the development of genome editing technology, a growing number of efforts are being made to employ pigs as a large animal model for biomedical research. Pigs are considered the preferred nonrodent model because of their similarities in size, organ anatomy, and homology to humans. Thus, the present study produced MSTN mutant pigs and applied them in tendon and heart research. Application of PCR-RFLP method in MSTN mutant pig production In the previous study, we already produced MSTN knockout pigs using transcription activator-like effector nucleases (TALEN) mediated gene editing and somatic cell nuclear transfer (SCNT) mediated pig production. In the present study, we were trying to produce MSTN mutant pigs by mating these MSTN knockout pigs with WT pigs. However, the identification of gene mutated animals is labor-intensive and costly in mutated animal breeding. The identification of these mutations is more technically demanding and time-consuming than the generation of the animals themselves. To overcome this problem, we developed the restriction enzyme-mediated PCR-RFLP assay for MSTN mutant pig genotyping. To accomplish this, conserved oligonucleotide primer and restriction site were deduced according to the mutated sequence of the MSTN mutant pigs. PCR amplification yielded a 167 bp band for all homozygous MSTN mutant (MSTN-/-), heterozygous MSTN mutant (MSTN+/-), and wild-type (WT) pigs. However, MSTN+/- samples produced two fragments with 167bp and 86 bp, and WT samples produced one fragment with 86 bp after being digested by BstNI. MSTN-/- samples were not digested by BstNI and yielded a 167 bp band. Thus, we were able to determine the genotype of all pigs using BstNI restriction enzyme-mediated PCR-RFLP method. Overall, the present study established a simple and fast PCR-RFLP genotyping method and applied it in MSTN mutant pig production. MSTN deficiency decreases collagen expression in tendon and causes tippy-toe standing in pigs In order to investigate the role of MSTN in tendon, 36 MSTN-/- and 30 WT male pigs were used in tendon research at 2-day-old age, respectively. 69.4% of the MSTN-/- pigs showed the tippy-toe standing, which is known as a collagen related pathological feature in tendon, while no tippy-toe standing was detected in WT pigs. The tendon to body weight ratio was significantly decreased in MSTN-/- pigs compared to WT pigs (p<0.05). The crimp length of the MSTN-/- tendon was significantly longer than that of WT pigs (p<0.05). The expression of MSTN and the activin receptor type IIB (ACVRIIB) was detected in the tendon. Type I collagen (Col1A) and Scleraxis (Scx) expression levels in tendon were significantly lower than those in WT in vivo (p<0.05, respectively), whereas cyclin-dependent kinase inhibitor 1 (p21) expression level was higher (p<0.05). Phosphorylation of Smad2/3 was significantly lower in MSTN-/- tendon compared with that of WT tendon in vivo (p<0.05). MSTN treatment significantly increased the phosphorylation of Smad2/3 in tendon fibroblasts (p<0.05). Moreover, the MSTN treatment increased Col1A and Scx (p<0.05, p<0.01, respectively) and decreased p21 expression in vitro (p<0.001). There was a significant increase in fibroblast proliferation after MSTN treatment (p<0.05). The results indicated that MSTN regulates collagen expression and proliferation in tendon fibroblasts; thus, MSTN deficiency causes collagen related pathological tippy-toe standing in MSTN-/- pigs. MSTN deficiency decreases collagen expression in pig heart We investigated whether loss of MSTN affects the cardiac ECM in pigs. Three male MSTN-/- and WT pigs were used in heart research at 6-month-old age, respectively. Cardiac ECM and underlying mechanisms were determined post-mortem. The role of MSTN on collagen expression was investigated by treating cardiac fibroblasts with active MSTN protein in vitro. MSTN protein was detected in WT hearts, while no expression was detected in MSTN-/- hearts. The heart-to-body weight ratio was significantly decreased in MSTN-/-pigs (p<0.05). The morphometric analysis, including picrosirius red staining (p<0.01), immunofluorescent staining (p<0.01), and ultra-structural thickness examination of the endomysium (p<0.001), revealed a significant reduction of connective tissue content in MSTN-/- hearts compared to WT. Hydroxyproline (p<0.01), Col1A (p<0.05), and p-Smad3/Smad3 levels (p<0.05) were significantly lower in MSTN-/- hearts in vivo. Consistently, cardiac fibroblasts treated with exogenous MSTN protein overexpressed Col1A (p<0.05) and activated Smad (p<0.05) and AKT signaling pathways (p<0.05) in vitro. The present study suggests that inhibition of MSTN decreases cardiac ECM. Conclusion: The present study firstly established PCR-RFLP method to identify MSTN mutant pigs and applied it in MSTN mutant pig production. Using these MSTN pigs as a large animal model, we revealed that MSTN directly regulate the ECM content through modulating Smad signaling in tendon and heart. |
参考文献: |
1. Herrera, J., C.A. Henke, and P.B. Bitterman, Extracellular matrix as a driver of progressive fibrosis. J Clin Invest, 2018. 128(1): p. 45-53.
﹀
2. Desmoulière, A., Factors influencing myofibroblast differentiation during wound healing and fibrosis. Cell Biol Int, 1995. 19(5): p. 471-6. 3. Hama Amin, B.J., F.H. Kakamad, G.S. Ahmed, et al., Post COVID-19 pulmonary fibrosis; a meta-analysis study. Ann Med Surg (Lond), 2022. 77: p. 103590. 4. DeBari, M.K. and R.D. Abbott, Adipose Tissue Fibrosis: Mechanisms, Models, and Importance. Int J Mol Sci, 2020. 21(17). 5. Shanbhag, S.M., A.M. Greve, T. Aspelund, et al., Prevalence and prognosis of ischaemic and non-ischaemic myocardial fibrosis in older adults. Eur Heart J, 2019. 40(6): p. 529-538. 6. Koyama, Y. and D.A. Brenner, Liver inflammation and fibrosis. J Clin Invest, 2017. 127(1): p. 55-64. 7. Richeldi, L., H.R. Collard, and M.G. Jones, Idiopathic pulmonary fibrosis. Lancet, 2017. 389(10082): p. 1941-1952. 8. Rosenbloom, J., S.V. Castro, and S.A. Jimenez, Narrative review: fibrotic diseases: cellular and molecular mechanisms and novel therapies. Ann Intern Med, 2010. 152(3): p. 159-66. 9. Wynn, T.A., Cellular and molecular mechanisms of fibrosis. J Pathol, 2008. 214(2): p. 199-210. 10. Higgins, D.P., S. Hemsley, and P.J. Canfield, Association of uterine and salpingeal fibrosis with chlamydial hsp60 and hsp10 antigen-specific antibodies in Chlamydia-infected koalas. Clin Diagn Lab Immunol, 2005. 12(5): p. 632-9. 11. Zeisberg, M. and R. Kalluri, Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol, 2013. 304(3): p. C216-25. 12. Gabbiani, G., The myofibroblast in wound healing and fibrocontractive diseases. J Pathol, 2003. 200(4): p. 500-3. 13. Hinz, B., S.H. Phan, V.J. Thannickal, et al., Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol, 2012. 180(4): p. 1340-55. 14. Klingberg, F., B. Hinz, and E.S. White, The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol, 2013. 229(2): p. 298-309. 15. Wahab, N.A., B.S. Weston, and R.M. Mason, Modulation of the TGFbeta/Smad signaling pathway in mesangial cells by CTGF/CCN2. Exp Cell Res, 2005. 307(2): p. 305-14. 16. Khan, Z.A., The role of integrins in the activation of fibroblasts from skin, lung and breast tissue. 2017, Queen Mary University of London. 17. Frohlich, J. and M. Vinciguerra, Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe? Geroscience, 2020. 42(6): p. 1475-1498. 18. Beyer, T.A., M. Narimatsu, A. Weiss, et al., The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013. 1830(2): p. 2268-2279. 19. McPherron, A.C., A.M. Lawler, and S.J. Lee, Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 1997. 387(6628): p. 83-90. 20. Mosher, D.S., P. Quignon, C.D. Bustamante, et al., A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet, 2007. 3(5): p. e79. 21. Kijas, J.W., R. McCulloch, J.E. Edwards, et al., Evidence for multiple alleles effecting muscling and fatness at the ovine GDF8 locus. BMC Genet, 2007. 8: p. 80. 22. Stinckens, A., T. Luyten, J. Bijttebier, et al., Characterization of the complete porcine MSTN gene and expression levels in pig breeds differing in muscularity. Anim Genet, 2008. 39(6): p. 586-96. 23. Grobet, L., L.J. Martin, D. Poncelet, et al., A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet, 1997. 17(1): p. 71-4. 24. de Larco, J.E. and G.J. Todaro, Growth factors from murine sarcoma virus-transformed cells. Proc Natl Acad Sci U S A, 1978. 75(8): p. 4001-5. 25. Anzano, M.A., A.B. Roberts, C.A. Meyers, et al., Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res, 1982. 42(11): p. 4776-8. 26. Tucker, R.F., G.D. Shipley, H.L. Moses, et al., Growth inhibitor from BSC-1 cells closely related to platelet type beta transforming growth factor. Science, 1984. 226(4675): p. 705-7. 27. Roberts, A.B., M.A. Anzano, L.M. Wakefield, et al., Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci U S A, 1985. 82(1): p. 119-23. 28. Hinck, A.P., T.D. Mueller, and T.A. Springer, Structural Biology and Evolution of the TGF-β Family. Cold Spring Harb Perspect Biol, 2016. 8(12). 29. Weiss, A. and L. Attisano, The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol, 2013. 2(1): p. 47-63. 30. Morikawa, M., R. Derynck, and K. Miyazono, TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol, 2016. 8(5). 31. Wrana, J.L., L. Attisano, R. Wieser, et al., Mechanism of activation of the TGF-β receptor. Nature, 1994. 370(6488): p. 341-347. 32. Massagué, J., J. Seoane, and D. Wotton, Smad transcription factors. Genes & development, 2005. 19(23): p. 2783-2810. 33. Massagué, J., How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000. 1(3): p. 169-78. 34. Nakao, A., T. Imamura, S. Souchelnytskyi, et al., TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. Embo j, 1997. 16(17): p. 5353-62. 35. Derynck, R. and Y.E. Zhang, Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 2003. 425(6958): p. 577-84. 36. Zhang, Y.E., Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harb Perspect Biol, 2017. 9(2). 37. Gonzalez-Cadavid, N.F., W.E. Taylor, K. Yarasheski, et al., Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14938-43. 38. Patel, K. and H. Amthor, The function of Myostatin and strategies of Myostatin blockade-new hope for therapies aimed at promoting growth of skeletal muscle. Neuromuscul Disord, 2005. 15(2): p. 117-26. 39. Skrzypczak, D., M. Skrzypczak-Zielińska, A.E. Ratajczak, et al., Myostatin and Follistatin-New Kids on the Block in the Diagnosis of Sarcopenia in IBD and Possible Therapeutic Implications. Biomedicines, 2021. 9(10). 40. Oldham, J.M., C.C. Osepchook, F. Jeanplong, et al., The decrease in mature myostatin protein in male skeletal muscle is developmentally regulated by growth hormone. J Physiol, 2009. 587(3): p. 669-77. 41. Hill, J.J., M.V. Davies, A.A. Pearson, et al., The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem, 2002. 277(43): p. 40735-41. 42. Eliasson, P., T. Andersson, J. Kulas, et al., Myostatin in tendon maintenance and repair. Growth Factors, 2009. 27(4): p. 247-54. 43. George, I., L.T. Bish, G. Kamalakkannan, et al., Myostatin activation in patients with advanced heart failure and after mechanical unloading. Eur J Heart Fail, 2010. 12(5): p. 444-53. 44. Kambadur, R., M. Sharma, T.P. Smith, et al., Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res, 1997. 7(9): p. 910-6. 45. Xu, C., G. Wu, Y. Zohar, et al., Analysis of myostatin gene structure, expression and function in zebrafish. J Exp Biol, 2003. 206(Pt 22): p. 4067-79. 46. Schuelke, M., K.R. Wagner, L.E. Stolz, et al., Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med, 2004. 350(26): p. 2682-8. 47. Lim, S., C.D. McMahon, K.G. Matthews, et al., Absence of Myostatin Improves Cardiac Function Following Myocardial Infarction. Heart Lung Circ, 2018. 27(6): p. 693-701. 48. Lee, S.J., Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol, 2004. 20: p. 61-86. 49. Breitbart, A., M. Auger-Messier, J.D. Molkentin, et al., Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am J Physiol Heart Circ Physiol, 2011. 300(6): p. H1973-82. 50. Zimmers, T.A., M.V. Davies, L.G. Koniaris, et al., Induction of cachexia in mice by systemically administered myostatin. Science, 2002. 296(5572): p. 1486-8. 51. Anderson, S.B., A.L. Goldberg, and M. Whitman, Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J Biol Chem, 2008. 283(11): p. 7027-35. 52. McPherron, A.C. and S.J. Lee, Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A, 1997. 94(23): p. 12457-61. 53. Lee, S.J. and A.C. McPherron, Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A, 2001. 98(16): p. 9306-11. 54. Travascio, F., Composition and function of the extracellular matrix in the human body. 2016: BoD–Books on Demand. 55. Grinnell, F., Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol, 2003. 13(5): p. 264-9. 56. Sekelsky, J.J., S.J. Newfeld, L.A. Raftery, et al., Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics, 1995. 139(3): p. 1347-58. 57. Chen, H.B., J. Shen, Y.T. Ip, et al., Identification of phosphatases for Smad in the BMP/DPP pathway. Genes Dev, 2006. 20(6): p. 648-53. 58. Attisano, L. and S.T. Lee-Hoeflich, The Smads. Genome Biol, 2001. 2(8): p. Reviews3010. 59. Miyazono, K., TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev, 2000. 11(1-2): p. 15-22. 60. ten Dijke, P. and C.S. Hill, New insights into TGF-beta-Smad signalling. Trends Biochem Sci, 2004. 29(5): p. 265-73. 61. Wu, J.W., M. Hu, J. Chai, et al., Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Mol Cell, 2001. 8(6): p. 1277-89. 62. Moustakas, A., S. Souchelnytskyi, and C.H. Heldin, Smad regulation in TGF-beta signal transduction. J Cell Sci, 2001. 114(Pt 24): p. 4359-69. 63. Ebisawa, T., M. Fukuchi, G. Murakami, et al., Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem, 2001. 276(16): p. 12477-80. 64. Massagué, J. and D. Wotton, Transcriptional control by the TGF-beta/Smad signaling system. Embo j, 2000. 19(8): p. 1745-54. 65. Heldin, C.H. and A. Moustakas, Role of Smads in TGFβ signaling. Cell Tissue Res, 2012. 347(1): p. 21-36. 66. Wang, W., V. Koka, and H.Y. Lan, Transforming growth factor-beta and Smad signalling in kidney diseases. Nephrology (Carlton), 2005. 10(1): p. 48-56. 67. Zhong, X., A.C. Chung, H.Y. Chen, et al., Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J Am Soc Nephrol, 2011. 22(9): p. 1668-81. 68. Barratt, S.L., A. Creamer, C. Hayton, et al., Idiopathic Pulmonary Fibrosis (IPF): An Overview. J Clin Med, 2018. 7(8). 69. Zhang, K., M.D. Rekhter, D. Gordon, et al., Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. Am J Pathol, 1994. 145(1): p. 114-25. 70. Xia, H., D. Diebold, R. Nho, et al., Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med, 2008. 205(7): p. 1659-72. 71. Popov, Y., E. Patsenker, F. Stickel, et al., Integrin alphavbeta6 is a marker of the progression of biliary and portal liver fibrosis and a novel target for antifibrotic therapies. J Hepatol, 2008. 48(3): p. 453-64. 72. Puthawala, K., N. Hadjiangelis, S.C. Jacoby, et al., Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med, 2008. 177(1): p. 82-90. 73. Raghu, G., D. Weycker, J. Edelsberg, et al., Incidence and prevalence of idiopathic pulmonary fibrosis. American journal of respiratory and critical care medicine, 2006. 174(7): p. 810-816. 74. Ban, C., W. Yan, B. Xie, et al., Spectrum of interstitial lung disease in China from 2000 to 2012. Eur Respir J, 2018. 52(3). 75. Sarrazy, V., A. Koehler, M.L. Chow, et al., Integrins αvβ5 and αvβ3 promote latent TGF-β1 activation by human cardiac fibroblast contraction. Cardiovasc Res, 2014. 102(3): p. 407-17. 76. Yacoub, S., S. Kotit, A.O. Mocumbi, et al., Neglected diseases in cardiology: a call for urgent action. Nat Clin Pract Cardiovasc Med, 2008. 5(4): p. 176-7. 77. Sivasankaran, S., Restrictive cardiomyopathy in India: the story of a vanishing mystery. Heart, 2009. 95(1): p. 9-14. 78. Schuppan, D. and N.H. Afdhal, Liver cirrhosis. Lancet, 2008. 371(9615): p. 838-51. 79. Lee, Y.A., M.C. Wallace, and S.L. Friedman, Pathobiology of liver fibrosis: a translational success story. Gut, 2015. 64(5): p. 830-41. 80. Patsenker, E. and F. Stickel, Role of integrins in fibrosing liver diseases. Am J Physiol Gastrointest Liver Physiol, 2011. 301(3): p. G425-34. 81. Levine, D., D.C. Rockey, T.A. Milner, et al., Expression of the integrin alpha8beta1 during pulmonary and hepatic fibrosis. Am J Pathol, 2000. 156(6): p. 1927-35. 82. Abraham, D.J., B. Eckes, V. Rajkumar, et al., New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep, 2007. 9(2): p. 136-43. 83. Ferreira, R.R., R.D.S. Abreu, G. Vilar-Pereira, et al., TGF-β inhibitor therapy decreases fibrosis and stimulates cardiac improvement in a pre-clinical study of chronic Chagas' heart disease. PLoS Negl Trop Dis, 2019. 13(7): p. e0007602. 84. George, J., D. Roulot, V.E. Koteliansky, et al., In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type II receptor: a potential new therapy for hepatic fibrosis. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12719-24. 85. Weiskirchen, R. and S.K. Meurer, BMP-7 counteracting TGF-beta1 activities in organ fibrosis. Front Biosci (Landmark Ed), 2013. 18(4): p. 1407-34. 86. Bragdon, B., O. Moseychuk, S. Saldanha, et al., Bone morphogenetic proteins: a critical review. Cell Signal, 2011. 23(4): p. 609-20. 87. Chang, H.M., J. Qiao, and P.C. Leung, Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors. Hum Reprod Update, 2016. 23(1): p. 1-18. 88. Wozney, J.M., The bone morphogenetic protein family and osteogenesis. Mol Reprod Dev, 1992. 32(2): p. 160-7. 89. Chen, D., M. Zhao, and G.R. Mundy, Bone morphogenetic proteins. Growth factors, 2004. 22(4): p. 233-241. 90. Zhang, Y., Z. Zhang, X. Zhao, et al., A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development, 2000. 127(7): p. 1431-43. 91. Molloy, E.L., A. Adams, J.B. Moore, et al., BMP4 induces an epithelial-mesenchymal transition-like response in adult airway epithelial cells. Growth Factors, 2008. 26(1): p. 12-22. 92. Jeffery, T.K., P.D. Upton, R.C. Trembath, et al., BMP4 inhibits proliferation and promotes myocyte differentiation of lung fibroblasts via Smad1 and JNK pathways. Am J Physiol Lung Cell Mol Physiol, 2005. 288(2): p. L370-8. 93. Fan, J., H. Shen, Y. Sun, et al., Bone morphogenetic protein 4 mediates bile duct ligation induced liver fibrosis through activation of Smad1 and ERK1/2 in rat hepatic stellate cells. J Cell Physiol, 2006. 207(2): p. 499-505. 94. Sun, B., R. Huo, Y. Sheng, et al., Bone morphogenetic protein-4 mediates cardiac hypertrophy, apoptosis, and fibrosis in experimentally pathological cardiac hypertrophy. Hypertension, 2013. 61(2): p. 352-60. 95. Tominaga, T., H. Abe, O. Ueda, et al., Activation of bone morphogenetic protein 4 signaling leads to glomerulosclerosis that mimics diabetic nephropathy. J Biol Chem, 2011. 286(22): p. 20109-16. 96. Ye, F., H. Xu, H. Yin, et al., The role of BMP6 in the proliferation and differentiation of chicken cartilage cells. PLoS One, 2019. 14(7): p. e0204384. 97. Arndt, S., E. Wacker, C. Dorn, et al., Enhanced expression of BMP6 inhibits hepatic fibrosis in non-alcoholic fatty liver disease. Gut, 2015. 64(6): p. 973-81. 98. Verhamme, F.M., E.G. De Smet, W. Van Hooste, et al., Bone morphogenetic protein 6 (BMP-6) modulates lung function, pulmonary iron levels and cigarette smoke-induced inflammation. Mucosal Immunol, 2019. 12(2): p. 340-351. 99. Arndt, S., S. Karrer, C. Hellerbrand, et al., Bone Morphogenetic Protein-6 Inhibits Fibrogenesis in Scleroderma Offering Treatment Options for Fibrotic Skin Disease. J Invest Dermatol, 2019. 139(9): p. 1914-1924.e6. 100. Dendooven, A., O. van Oostrom, D.M. van der Giezen, et al., Loss of endogenous bone morphogenetic protein-6 aggravates renal fibrosis. Am J Pathol, 2011. 178(3): p. 1069-79. 101. Yano, R., H.M. Golbar, T. Izawa, et al., Participation of bone morphogenetic protein (BMP)-6 and osteopontin in cisplatin (CDDP)-induced rat renal fibrosis. Exp Toxicol Pathol, 2015. 67(2): p. 99-107. 102. Li, X., G. An, Y. Wang, et al., Anti-fibrotic effects of bone morphogenetic protein-7-modified bone marrow mesenchymal stem cells on silica-induced pulmonary fibrosis. Exp Mol Pathol, 2017. 102(1): p. 70-77. 103. Wang, S. and R. Hirschberg, Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem, 2004. 279(22): p. 23200-6. 104. Koćwin, M., M. Jonakowski, M. Przemęcka, et al., Selected bone morphogenetic proteins - the possibility of their use in the diagnostics and therapy of severe asthma. Adv Respir Med, 2017. 85(2): p. 109-115. 105. Zou, G.L., S. Zuo, S. Lu, et al., Bone morphogenetic protein-7 represses hepatic stellate cell activation and liver fibrosis via regulation of TGF-β/Smad signaling pathway. World J Gastroenterol, 2019. 25(30): p. 4222-4234. 106. Kinoshita, K., Y. Iimuro, K. Otogawa, et al., Adenovirus-mediated expression of BMP-7 suppresses the development of liver fibrosis in rats. Gut, 2007. 56(5): p. 706-14. 107. Meng, X.M., A.C. Chung, and H.Y. Lan, Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond), 2013. 124(4): p. 243-54. 108. Chen, X., J. Xu, B. Jiang, et al., Bone Morphogenetic Protein-7 Antagonizes Myocardial Fibrosis Induced by Atrial Fibrillation by Restraining Transforming Growth Factor-β (TGF-β)/Smads Signaling. Med Sci Monit, 2016. 22: p. 3457-3468. 109. Murray, L.A., T.L. Hackett, S.M. Warner, et al., BMP-7 does not protect against bleomycin-induced lung or skin fibrosis. PLoS One, 2008. 3(12): p. e4039. 110. Breitkopf-Heinlein, K., C. Meyer, C. König, et al., BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut, 2017. 66(5): p. 939-954. 111. Li, P., Y. Li, L. Zhu, et al., Targeting secreted cytokine BMP9 gates the attenuation of hepatic fibrosis. Biochim Biophys Acta Mol Basis Dis, 2018. 1864(3): p. 709-720. 112. Tu, L., A. Desroches-Castan, C. Mallet, et al., Selective BMP-9 Inhibition Partially Protects Against Experimental Pulmonary Hypertension. Circ Res, 2019. 124(6): p. 846-855. 113. Chen, X., M. Orriols, F.J. Walther, et al., Bone Morphogenetic Protein 9 Protects against Neonatal Hyperoxia-Induced Impairment of Alveolarization and Pulmonary Inflammation. Front Physiol, 2017. 8: p. 486. 114. Liu, R., W. Hu, X. Li, et al., Association of circulating BMP9 with coronary heart disease and hypertension in Chinese populations. BMC Cardiovasc Disord, 2019. 19(1): p. 131. 115. Nakashima, M., T. Toyono, A. Akamine, et al., Expression of growth/differentiation factor 11, a new member of the BMP/TGFbeta superfamily during mouse embryogenesis. Mech Dev, 1999. 80(2): p. 185-9. 116. Zhang, Y., Y. Wei, D. Liu, et al., Role of growth differentiation factor 11 in development, physiology and disease. Oncotarget, 2017. 8(46): p. 81604-81616. 117. Zhang, Y., Q. Li, D. Liu, et al., GDF11 improves tubular regeneration after acute kidney injury in elderly mice. Sci Rep, 2016. 6: p. 34624. 118. Pons, M., L.G. Koniaris, S.M. Moe, et al., GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure. Surgery, 2018. 164(2): p. 262-273. 119. Smith, S.C., X. Zhang, X. Zhang, et al., GDF11 does not rescue aging-related pathological hypertrophy. Circ Res, 2015. 117(11): p. 926-32. 120. Dai, Z., G. Song, A. Balakrishnan, et al., Growth differentiation factor 11 attenuates liver fibrosis via expansion of liver progenitor cells. Gut, 2020. 69(6): p. 1104-1115. 121. Lieber, R.L., Skeletal muscle structure, function, and plasticity. 2002: Lippincott Williams & Wilkins. 122. Visone, R., M. Gilardi, A. Marsano, et al., Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering. Molecules, 2016. 21(9). 123. Chapman, M.A., Biochemical, Biomechanical and Cellular Investigation of Skeletal Muscle Fibrosis. 2015: University of California, San Diego. 124. Gillies, A.R. and R.L. Lieber, Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve, 2011. 44(3): p. 318-31. 125. Paul, R.G. and A.J. Bailey, Glycation of collagen: the basis of its central role in the late complications of ageing and diabetes. Int J Biochem Cell Biol, 1996. 28(12): p. 1297-310. 126. Alameddine, H.S. and J.E. Morgan, Matrix Metalloproteinases and Tissue Inhibitor of Metalloproteinases in Inflammation and Fibrosis of Skeletal Muscles. J Neuromuscul Dis, 2016. 3(4): p. 455-473. 127. Edwards, C.A. and W.D. O'Brien, Jr., Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta, 1980. 104(2): p. 161-7. 128. Chapman, M.A., J. Zhang, I. Banerjee, et al., Disruption of both nesprin 1 and desmin results in nuclear anchorage defects and fibrosis in skeletal muscle. Hum Mol Genet, 2014. 23(22): p. 5879-92. 129. Lieber, R.L. and S.R. Ward, Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol, 2013. 305(3): p. C241-52. 130. Joe, A.W., L. Yi, A. Natarajan, et al., Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol, 2010. 12(2): p. 153-63. 131. Alexakis, C., T. Partridge, and G. Bou-Gharios, Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol, 2007. 293(2): p. C661-9. 132. Burks, T.N. and R.D. Cohn, Role of TGF-β signaling in inherited and acquired myopathies. Skelet Muscle, 2011. 1(1): p. 19. 133. Laumonier, T. and J. Menetrey, Muscle injuries and strategies for improving their repair. J Exp Orthop, 2016. 3(1): p. 15. 134. Mann, C.J., E. Perdiguero, Y. Kharraz, et al., Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle, 2011. 1(1): p. 21. 135. Mahdy, M.A.A., Skeletal muscle fibrosis: an overview. Cell Tissue Res, 2019. 375(3): p. 575-588. 136. Zhu, J., Y. Li, W. Shen, et al., Relationships between transforming growth factor-beta1, myostatin, and decorin: implications for skeletal muscle fibrosis. J Biol Chem, 2007. 282(35): p. 25852-63. 137. Li, Z.B., H.D. Kollias, and K.R. Wagner, Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem, 2008. 283(28): p. 19371-8. 138. Bo Li, Z., J. Zhang, and K.R. Wagner, Inhibition of myostatin reverses muscle fibrosis through apoptosis. J Cell Sci, 2012. 125(Pt 17): p. 3957-65. 139. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015. 386(9995): p. 743-800. 140. Dean, B.J.F., S.G. Dakin, N.L. Millar, et al., Review: Emerging concepts in the pathogenesis of tendinopathy. Surgeon, 2017. 15(6): p. 349-354. 141. McCormick, A., Morbidity statistics from general practice. Fourth national study 1991-1992. Office of population censuses and surveys, 1995. 142. Riley, G., Tendinopathy-from basic science to treatment. Nat Clin Pract Rheumatol, 2008. 4(2): p. 82-9. 143. Morita, W., Investigating fibrotic pathways in human rotator cuff tendon disease. 2018, University of Oxford. 144. Nourissat, G., F. Berenbaum, and D. Duprez, Tendon injury: from biology to tendon repair. Nat Rev Rheumatol, 2015. 11(4): p. 223-33. 145. Birch, H.L., Tendon matrix composition and turnover in relation to functional requirements. Int J Exp Pathol, 2007. 88(4): p. 241-8. 146. Connizzo, B.K., S.M. Yannascoli, and L.J. Soslowsky, Structure-function relationships of postnatal tendon development: a parallel to healing. Matrix Biol, 2013. 32(2): p. 106-16. 147. O'Brien, M., Structure and metabolism of tendons. Scand J Med Sci Sports, 1997. 7(2): p. 55-61. 148. Kannus, P., Structure of the tendon connective tissue. Scand J Med Sci Sports, 2000. 10(6): p. 312-20. 149. Jacobson, E., A.J. Dart, T. Mondori, et al., Focal experimental injury leads to widespread gene expression and histologic changes in equine flexor tendons. PLoS One, 2015. 10(4): p. e0122220. 150. Yoon, J.H. and J. Halper, Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact, 2005. 5(1): p. 22-34. 151. Rowe, R.W., The structure of rat tail tendon. Connect Tissue Res, 1985. 14(1): p. 9-20. 152. Kastelic, J., A. Galeski, and E. Baer, The multicomposite structure of tendon. Connect Tissue Res, 1978. 6(1): p. 11-23. 153. Silver, F.H., J.W. Freeman, and G.P. Seehra, Collagen self-assembly and the development of tendon mechanical properties. J Biomech, 2003. 36(10): p. 1529-53. 154. Magnusson, S.P., P. Hansen, and M. Kjaer, Tendon properties in relation to muscular activity and physical training. Scand J Med Sci Sports, 2003. 13(4): p. 211-23. 155. Wulandari, E., S.W. Jusman, Y. Moenadjat, et al., Expressions of Collagen I and III in Hypoxic Keloid Tissue. Kobe J Med Sci, 2016. 62(3): p. E58-69. 156. Wojciak, B. and J.F. Crossan, The accumulation of inflammatory cells in synovial sheath and epitenon during adhesion formation in healing rat flexor tendons. Clin Exp Immunol, 1993. 93(1): p. 108-14. 157. Franchi, M., A. Trirè, M. Quaranta, et al., Collagen structure of tendon relates to function. ScientificWorldJournal, 2007. 7: p. 404-20. 158. Fan, J., K. Abedi-Dorcheh, A. Sadat Vaziri, et al., A Review of Recent Advances in Natural Polymer-Based Scaffolds for Musculoskeletal Tissue Engineering. Polymers (Basel), 2022. 14(10). 159. Chen, S. and D.E. Birk, The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly. Febs j, 2013. 280(10): p. 2120-37. 160. Waggett, A.D., J.R. Ralphs, A.P. Kwan, et al., Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol, 1998. 16(8): p. 457-70. 161. Kannus, P., L. Jozsa, T.A. Järvinen, et al., Location and distribution of non-collagenous matrix proteins in musculoskeletal tissues of rat. Histochem J, 1998. 30(11): p. 799-810. 162. Fu, S.C., Y.P. Wong, B.P. Chan, et al., The roles of bone morphogenetic protein (BMP) 12 in stimulating the proliferation and matrix production of human patellar tendon fibroblasts. Life Sci, 2003. 72(26): p. 2965-74. 163. Aparecida de Aro, A., C. Vidal Bde, and E.R. Pimentel, Biochemical and anisotropical properties of tendons. Micron, 2012. 43(2-3): p. 205-14. 164. Schweitzer, R., J.H. Chyung, L.C. Murtaugh, et al., Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development, 2001. 128(19): p. 3855-66. 165. Shukunami, C., A. Takimoto, M. Oro, et al., Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol, 2006. 298(1): p. 234-47. 166. Riley, G.P., R.L. Harrall, T.E. Cawston, et al., Tenascin-C and human tendon degeneration. Am J Pathol, 1996. 149(3): p. 933-43. 167. Travers, J.G., F.A. Kamal, J. Robbins, et al., Cardiac Fibrosis: The Fibroblast Awakens. Circ Res, 2016. 118(6): p. 1021-40. 168. Yoshimatsu, Y. and T. Watabe, Roles of TGF-β signals in endothelial-mesenchymal transition during cardiac fibrosis. Int J Inflam, 2011. 2011: p. 724080. 169. Berk, B.C., K. Fujiwara, and S. Lehoux, ECM remodeling in hypertensive heart disease. The Journal of clinical investigation, 2007. 117(3): p. 568-575. 170. Gibb, A.A. and B.G. Hill, Metabolic Coordination of Physiological and Pathological Cardiac Remodeling. Circ Res, 2018. 123(1): p. 107-128. 171. Oldfield, C.J., T.A. Duhamel, and N.S. Dhalla, Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol, 2020. 98(2): p. 74-84. 172. Chong, M., Role of response gene to complement 32 (RGC32) in the transformation of cardiac fibroblasts to myofibroblasts. 2012, University of Georgia. 173. Rohr, S., Cardiac fibroblasts in cell culture systems: myofibroblasts all along? J Cardiovasc Pharmacol, 2011. 57(4): p. 389-99. 174. Krenning, G., E.M. Zeisberg, and R. Kalluri, The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol, 2010. 225(3): p. 631-7. 175. Xin, M., E.N. Olson, and R. Bassel-Duby, Mending broken hearts: cardiac development as a basis for adult heart regeneration and repair. Nat Rev Mol Cell Biol, 2013. 14(8): p. 529-41. 176. Bergmann, O., S. Zdunek, A. Felker, et al., Dynamics of Cell Generation and Turnover in the Human Heart. Cell, 2015. 161(7): p. 1566-75. 177. Doll, S., M. Dreßen, P.E. Geyer, et al., Region and cell-type resolved quantitative proteomic map of the human heart. Nat Commun, 2017. 8(1): p. 1469. 178. Souders, C.A., S.L. Bowers, and T.A. Baudino, Cardiac fibroblast: the renaissance cell. Circ Res, 2009. 105(12): p. 1164-76. 179. Norris, R.A., T.K. Borg, J.T. Butcher, et al., Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Ann N Y Acad Sci, 2008. 1123: p. 30-40. 180. Ivey, M.J. and M.D. Tallquist, Defining the Cardiac Fibroblast. Circ J, 2016. 80(11): p. 2269-2276. 181. MacKenna, D., S.R. Summerour, and F.J. Villarreal, Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res, 2000. 46(2): p. 257-63. 182. Herum, K.M., J. Choppe, A. Kumar, et al., Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell, 2017. 28(14): p. 1871-1882. 183. Bishop, J.E. and G.J. Laurent, Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J, 1995. 16 Suppl C: p. 38-44. 184. Brower, G.L., J.D. Gardner, M.F. Forman, et al., The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardiothorac Surg, 2006. 30(4): p. 604-10. 185. Hall, C., K. Gehmlich, C. Denning, et al., Complex Relationship Between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease. J Am Heart Assoc, 2021. 10(5): p. e019338. 186. Disertori, M., M. Masè, and F. Ravelli, Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends Cardiovasc Med, 2017. 27(5): p. 363-372. 187. Hinderer, S. and K. Schenke-Layland, Cardiac fibrosis - A short review of causes and therapeutic strategies. Adv Drug Deliv Rev, 2019. 146: p. 77-82. 188. Graham-Brown, M.P., A.S. Patel, D.J. Stensel, et al., Imaging of Myocardial Fibrosis in Patients with End-Stage Renal Disease: Current Limitations and Future Possibilities. Biomed Res Int, 2017. 2017: p. 5453606. 189. Bujak, M. and N.G. Frangogiannis, The role of TGF-beta signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res, 2007. 74(2): p. 184-95. 190. Leask, A., Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ Res, 2010. 106(11): p. 1675-80. 191. Fan, D., A. Takawale, J. Lee, et al., Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair, 2012. 5(1): p. 15. 192. Robert, V., S. Besse, A. Sabri, et al., Differential regulation of matrix metalloproteinases associated with aging and hypertension in the rat heart. Lab Invest, 1997. 76(5): p. 729-38. 193. Gagliano, N., B. Arosio, F. Grizzi, et al., Reduced collagenolytic activity of matrix metalloproteinases and development of liver fibrosis in the aging rat. Mech Ageing Dev, 2002. 123(4): p. 413-25. 194. Frangogiannis, N.G., Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med, 2019. 65: p. 70-99. 195. Dobaczewski, M., W. Chen, and N.G. Frangogiannis, Transforming growth factor (TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol, 2011. 51(4): p. 600-6. 196. Kuwahara, F., H. Kai, K. Tokuda, et al., Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation, 2002. 106(1): p. 130-5. 197. Khalil, H., O. Kanisicak, V. Prasad, et al., Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest, 2017. 127(10): p. 3770-3783. 198. Bujak, M., G. Ren, H.J. Kweon, et al., Essential role of Smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 2007. 116(19): p. 2127-38. 199. Molkentin, J.D., D. Bugg, N. Ghearing, et al., Fibroblast-Specific Genetic Manipulation of p38 Mitogen-Activated Protein Kinase In Vivo Reveals Its Central Regulatory Role in Fibrosis. Circulation, 2017. 136(6): p. 549-561. 200. Bassols, A., C. Costa, P.D. Eckersall, et al., The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clin Appl, 2014. 8(9-10): p. 715-31. 201. Walters, E.M., Y. Agca, V. Ganjam, et al., Animal models got you puzzled?: think pig. Ann N Y Acad Sci, 2011. 1245: p. 63-4. 202. Walters, E.M. and R.S. Prather, Advancing swine models for human health and diseases. Mo Med, 2013. 110(3): p. 212-5. 203. Seok, J., H.S. Warren, A.G. Cuenca, et al., Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A, 2013. 110(9): p. 3507-12. 204. Lunney, J.K., Advances in swine biomedical model genomics. Int J Biol Sci, 2007. 3(3): p. 179-84. 205. Hryhorowicz, M., J. Zeyland, R. Słomski, et al., Genetically Modified Pigs as Organ Donors for Xenotransplantation. Mol Biotechnol, 2017. 59(9-10): p. 435-444. 206. Wolfe, J.H., Gene therapy in large animal models of human genetic diseases. Introduction. Ilar j, 2009. 50(2): p. 107-11. 207. Amills, M., A. Clop, O. Ramírez, et al., Origin and genetic diversity of pig breeds. eLS, 2010. 208. Wernersson, R., M.H. Schierup, F.G. Jørgensen, et al., Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics, 2005. 6: p. 70. 209. Bejerano, G., M. Pheasant, I. Makunin, et al., Ultraconserved elements in the human genome. Science, 2004. 304(5675): p. 1321-5. 210. Groenen, M.A., A.L. Archibald, H. Uenishi, et al., Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012. 491(7424): p. 393-8. 211. Whyte, J.J. and R.S. Prather, Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev, 2011. 78(10-11): p. 879-91. 212. Matsunari, H. and H. Nagashima, Application of genetically modified and cloned pigs in translational research. J Reprod Dev, 2009. 55(3): p. 225-30. 213. Freeman, T.C., A. Ivens, J.K. Baillie, et al., A gene expression atlas of the domestic pig. BMC Biol, 2012. 10: p. 90. 214. Prather, R.S., Pig genomics for biomedicine. Nat Biotechnol, 2013. 31(2): p. 122-4. 215. Walters, E.M., E. Wolf, J.J. Whyte, et al., Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics, 2012. 5: p. 55. 216. de Almeida, A.M. and E. Bendixen, Pig proteomics: a review of a species in the crossroad between biomedical and food sciences. J Proteomics, 2012. 75(14): p. 4296-314. 217. Lossi, L., L. D'Angelo, P. De Girolamo, et al., Anatomical features for an adequate choice of experimental animal model in biomedicine: II. Small laboratory rodents, rabbit, and pig. Ann Anat, 2016. 204: p. 11-28. 218. Prather, R.S., R.J. Hawley, D.B. Carter, et al., Transgenic swine for biomedicine and agriculture. Theriogenology, 2003. 59(1): p. 115-23. 219. Cabot, R.A., B. Kühholzer, A.W. Chan, et al., Transgenic pigs produced using in vitro matured oocytes infected with a retroviral vector. Anim Biotechnol, 2001. 12(2): p. 205-14. 220. Chenouard, V., L. Brusselle, J.M. Heslan, et al., A Rapid and Cost-Effective Method for Genotyping Genome-Edited Animals: A Heteroduplex Mobility Assay Using Microfluidic Capillary Electrophoresis. J Genet Genomics, 2016. 43(5): p. 341-8. 221. Zhu, X., Y. Xu, S. Yu, et al., An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep, 2014. 4: p. 6420. 222. Vouillot, L., A. Thélie, and N. Pollet, Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3 (Bethesda), 2015. 5(3): p. 407-15. 223. Dahlem, T.J., K. Hoshijima, M.J. Jurynec, et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet, 2012. 8(8): p. e1002861. 224. Vossen, R.H., E. Aten, A. Roos, et al., High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat, 2009. 30(6): p. 860-6. 225. Foster, S.D., S.R. Glover, A.N. Turner, et al., A mixing heteroduplex mobility assay (mHMA) to genotype homozygous mutants with small indels generated by CRISPR-Cas9 nucleases. MethodsX, 2019. 6: p. 1-5. 226. Shui, B., L. Hernandez Matias, Y. Guo, et al., The rise of CRISPR/Cas for genome editing in stem cells. Stem cells international, 2016. 2016. 227. Zischewski, J., R. Fischer, and L. Bortesi, Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv, 2017. 35(1): p. 95-104. 228. Park, E.-J., S. Fukuda, H. Endo, et al., Genetic polymorphism within Porphyra yezoensis (Bangiales, Rhodophyta) and related species from Japan and Korea detected by cleaved amplified polymorphic sequence analysis. European Journal of Phycology, 2007. 42(1): p. 29-40. 229. Kim, J.M., D. Kim, S. Kim, et al., Genotyping with CRISPR-Cas-derived RNA-guided endonucleases. Nat Commun, 2014. 5: p. 3157. 230. Jakaria, J., W. Ladhunka Nur Aliyya, R. Ismail, et al., Discovery of SNPs and indel 11-bp of the myostatin gene and its association with the double-muscled phenotype in Belgian blue crossbred cattle. Gene, 2021. 784: p. 145598. 231. Agrawal, V.K., G. Gahlot, S. Gupta, et al., Molecular characterization of myostatin gene affecting muscle growth in Kankrej cattle. Haryana Vet, 2017. 56(1): p. 25-28. 232. Di Stasio, L. and A. Rolando, A PCR-RFLP method for genotyping the myostatin locus in Piemontese cattle. Anim Genet, 2005. 36(6): p. 521. 233. Jia, C., C. Huai, J. Ding, et al., New applications of CRISPR/Cas9 system on mutant DNA detection. Gene, 2018. 641: p. 55-62. 234. Lonowski, L.A., Y. Narimatsu, A. Riaz, et al., Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat Protoc, 2017. 12(3): p. 581-603. 235. Maitra, A., Y. Cohen, S.E. Gillespie, et al., The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection. Genome Res, 2004. 14(5): p. 812-9. 236. Sun, Y.L. and C.S. Lin, Establishment and application of a fluorescent polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method for identifying porcine, caprine, and bovine meats. J Agric Food Chem, 2003. 51(7): p. 1771-6. 237. Mohammadi, A., M.R. Nassiry, J. Mosafer, et al., Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the iranian cattle breed sistani (Bos indicus). Genetika, 2009. 45(2): p. 224-9. 238. Mohammadabadi, M.R., M. Nikbakhti, H.R. Mirzaee, et al., Genetic variability in three native Iranian chicken populations of the Khorasan province based on microsatellite markers. Genetika, 2010. 46(4): p. 572-6. 239. Zamani, P., M. Akhondi, and M. Mohammadabadi, Associations of Inter-Simple Sequence Repeat loci with predicted breeding values of body weight in sheep. Small Ruminant Research, 2015. 132: p. 123-127. 240. Mohammadabadi, M.R., M. Soflaei, H. Mostafavi, et al., Using PCR for early diagnosis of bovine leukemia virus infection in some native cattle. Genet Mol Res, 2011. 10(4): p. 2658-63. 241. Dettori, M.L., A.M. Rocchigiani, S. Luridiana, et al., Growth hormone gene variability and its effects on milk traits in primiparous Sarda goats. J Dairy Res, 2013. 80(3): p. 255-62. 242. Kang, J.-D., S. Kim, H.-Y. Zhu, et al., Generation of cloned adult muscular pigs with myostatin gene mutation by genetic engineering. RSC advances, 2017. 7(21): p. 12541-12549. 243. Han, S.Z., S.S. Jin, M.F. Xuan, et al., Semen quality and fertilization ability of myostatin-knockout boars. Theriogenology, 2019. 135: p. 109-114. 244. Matika, O., D. Robledo, R. Pong-Wong, et al., Balancing selection at a premature stop mutation in the myostatin gene underlies a recessive leg weakness syndrome in pigs. PLoS Genet, 2019. 15(1): p. e1007759. 245. Shipley, C.F., Breeding soundness examination of the boar. Journal of Swine Health and Production, 1999. 7(3): p. 117-120. 246. Han, S.Z., Z.Y. Li, H.J. Paek, et al., Reproduction traits of heterozygous myostatin knockout sows crossbred with homozygous myostatin knockout boars. Reprod Domest Anim, 2021. 56(1): p. 26-33. 247. Kim, H.J., H.J. Lee, H. Kim, et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res, 2009. 19(7): p. 1279-88. 248. Yang, H. and Z. Wu, Genome Editing of Pigs for Agriculture and Biomedicine. Front Genet, 2018. 9: p. 360. 249. Luo, Z.B., Q.R. Luo, M.F. Xuan, et al., Comparison of internal organs between myostatin mutant and wild-type piglets. J Sci Food Agric, 2019. 99(15): p. 6788-6795. 250. Sivakumaran, T.A. and M.M. Lesperance, A PCR-RFLP assay for the A716T mutation in the WFS1 gene, a common cause of low-frequency sensorineural hearing loss. Genet Test, 2002. 6(3): p. 229-31. 251. Thomas, H.R., S.M. Percival, B.K. Yoder, et al., High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis. PLoS One, 2014. 9(12): p. e114632. 252. Butler, D.L., N. Juncosa, and M.R. Dressler, Functional efficacy of tendon repair processes. Annu Rev Biomed Eng, 2004. 6: p. 303-29. 253. Yang, G., B.B. Rothrauff, and R.S. Tuan, Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today, 2013. 99(3): p. 203-222. 254. Hodgson, R.J., P.J. O'Connor, and A.J. Grainger, Tendon and ligament imaging. Br J Radiol, 2012. 85(1016): p. 1157-72. 255. Mendias, C.L., E.B. Lynch, J.P. Gumucio, et al., Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. J Physiol, 2015. 593(8): p. 2037-52. 256. Fulzele, S., P. Arounleut, M. Cain, et al., Role of myostatin (GDF-8) signaling in the human anterior cruciate ligament. J Orthop Res, 2010. 28(8): p. 1113-8. 257. Mendias, C.L., K.I. Bakhurin, and J.A. Faulkner, Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci U S A, 2008. 105(1): p. 388-93. 258. Griffiths, R.I., Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol, 1991. 436: p. 219-36. 259. Le, W. and J. Yao, The Effect of Myostatin (GDF-8) on Proliferation and Tenocyte Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. J Hand Surg Asian Pac Vol, 2017. 22(2): p. 200-207. 260. Léjard, V., G. Brideau, F. Blais, et al., Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts. J Biol Chem, 2007. 282(24): p. 17665-75. 261. Havis, E., M.A. Bonnin, I. Olivera-Martinez, et al., Transcriptomic analysis of mouse limb tendon cells during development. Development, 2014. 141(19): p. 3683-96. 262. Xiong, Y., G.J. Hannon, H. Zhang, et al., p21 is a universal inhibitor of cyclin kinases. Nature, 1993. 366(6456): p. 701-4. 263. Harper, J.W., G.R. Adami, N. Wei, et al., The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell, 1993. 75(4): p. 805-16. 264. Bertoli, C., J.M. Skotheim, and R.A. de Bruin, Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol, 2013. 14(8): p. 518-28. 265. Gartel, A.L. and S.K. Radhakrishnan, Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res, 2005. 65(10): p. 3980-5. 266. Hirpara, K.M., O. Abouazza, B. O'Neill, et al., A technique for porcine flexor tendon harvest. Journal of Musculoskeletal Research, 2006. 10(04): p. 181-186. 267. Chen, B., B. Wang, W.J. Zhang, et al., In vivo tendon engineering with skeletal muscle derived cells in a mouse model. Biomaterials, 2012. 33(26): p. 6086-97. 268. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, 2001. 25(4): p. 402-408. 269. Huang, K., X. Shi, J. Wang, et al., Upregulated microRNA-106a Promotes Porcine Preadipocyte Proliferation and Differentiation by Targeting Different Genes. Genes (Basel), 2019. 10(10). 270. Junqueira, L.C., G. Bignolas, and R.R. Brentani, Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J, 1979. 11(4): p. 447-55. 271. Kanisicak, O., J.J. Mendez, S. Yamamoto, et al., Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. Dev Biol, 2009. 332(1): p. 131-41. 272. Heinemeier, K.M., J.L. Olesen, P. Schjerling, et al., Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol (1985), 2007. 102(2): p. 573-81. 273. Caldwell, F.J., Flexural Deformity of the Distal Interphalangeal Joint. Vet Clin North Am Equine Pract, 2017. 33(2): p. 315-330. 274. Sala, D.A., L.H. Shulman, R.F. Kennedy, et al., Idiopathic toe-walking: a review. Developmental medicine and child neurology, 1999. 41(12): p. 846-848. 275. Herchenhan, A., N.S. Kalson, D.F. Holmes, et al., Tenocyte contraction induces crimp formation in tendon-like tissue. Biomech Model Mechanobiol, 2012. 11(3-4): p. 449-59. 276. Benjamin, M., E. Kaiser, and S. Milz, Structure-function relationships in tendons: a review. J Anat, 2008. 212(3): p. 211-28. 277. Diamant, J., A. Keller, E. Baer, et al., Collagen; ultrastructure and its relation to mechanical properties as a function of ageing. Proc R Soc Lond B Biol Sci, 1972. 180(1060): p. 293-315. 278. Dyson, K., Tippy toe troubles: regulars-horse therapy. Farmer’s Weekly, 2015. 2015(15045): p. 61. 279. Salabi, F., M. Nazari, Q. Chen, et al., Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro. J Biotechnol, 2014. 192 Pt A: p. 268-80. 280. Thomas, M., B. Langley, C. Berry, et al., Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem, 2000. 275(51): p. 40235-43. 281. Yang, W., Y. Zhang, Y. Li, et al., Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem, 2007. 282(6): p. 3799-808. 282. Elkasrawy, M., S. Fulzele, M. Bowser, et al., Myostatin (GDF-8) inhibits chondrogenesis and chondrocyte proliferation in vitro by suppressing Sox-9 expression. Growth Factors, 2011. 29(6): p. 253-62. 283. Zhu, X.X., Y.Z. Zhong, Y.W. Ge, et al., CRISPR/Cas9-Mediated Generation of Guangxi Bama Minipigs Harboring Three Mutations in α-Synuclein Causing Parkinson's Disease. Sci Rep, 2018. 8(1): p. 12420. 284. Aksenov, M. and L. Andryushchenko, Myostatin gene role in strength building process. Theory and practice of physical culture, 2018(4): p. 24-24. 285. R Wagner, K., Clinical Applications of Myostatin Inhibitors for Neuromuscular Diseases. Immunology, Endocrine & Metabolic Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Immunology, Endocrine and Metabolic Agents), 2010. 10(4): p. 204-210. 286. Wagner, K.R., J.L. Fleckenstein, A.A. Amato, et al., A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol, 2008. 63(5): p. 561-71. 287. Attie, K.M., N.G. Borgstein, Y. Yang, et al., A single ascending-dose study of muscle regulator ACE-031 in healthy volunteers. Muscle Nerve, 2013. 47(3): p. 416-23. 288. Bodine, S.C., T.N. Stitt, M. Gonzalez, et al., Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol, 2001. 3(11): p. 1014-9. 289. Fiems, L.O., Double Muscling in Cattle: Genes, Husbandry, Carcasses and Meat. Animals (Basel), 2012. 2(3): p. 472-506. 290. Wagner, K.R., A.C. McPherron, N. Winik, et al., Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol, 2002. 52(6): p. 832-6. 291. McCroskery, S., M. Thomas, L. Platt, et al., Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci, 2005. 118(Pt 15): p. 3531-41. 292. Goldsmith, E.C. and T.K. Borg, The dynamic interaction of the extracellular matrix in cardiac remodeling. J Card Fail, 2002. 8(6 Suppl): p. S314-8. 293. de Souza, R.R., Aging of myocardial collagen. Biogerontology, 2002. 3(6): p. 325-35. 294. Bayomy, A.F., M. Bauer, Y. Qiu, et al., Regeneration in heart disease-Is ECM the key? Life Sci, 2012. 91(17-18): p. 823-7. 295. Farhadian, F., F. Contard, A. Corbier, et al., Fibronectin expression during physiological and pathological cardiac growth. J Mol Cell Cardiol, 1995. 27(4): p. 981-90. 296. Sullivan, K.E., K.P. Quinn, K.M. Tang, et al., Extracellular matrix remodeling following myocardial infarction influences the therapeutic potential of mesenchymal stem cells. Stem Cell Res Ther, 2014. 5(1): p. 14. 297. Camelliti, P., T.K. Borg, and P. Kohl, Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res, 2005. 65(1): p. 40-51. 298. Baudino, T.A., W. Carver, W. Giles, et al., Cardiac fibroblasts: friend or foe? Am J Physiol Heart Circ Physiol, 2006. 291(3): p. H1015-26. 299. Kong, P., P. Christia, and N.G. Frangogiannis, The pathogenesis of cardiac fibrosis. Cell Mol Life Sci, 2014. 71(4): p. 549-74. 300. Shimano, M., N. Ouchi, and K. Walsh, Cardiokines: recent progress in elucidating the cardiac secretome. Circulation, 2012. 126(21): p. e327-32. 301. Biesemann, N., L. Mendler, A. Wietelmann, et al., Myostatin regulates energy homeostasis in the heart and prevents heart failure. Circ Res, 2014. 115(2): p. 296-310. 302. Sharma, M., R. Kambadur, K.G. Matthews, et al., Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol, 1999. 180(1): p. 1-9. 303. Shyu, K.G., M.J. Lu, B.W. Wang, et al., Myostatin expression in ventricular myocardium in a rat model of volume-overload heart failure. Eur J Clin Invest, 2006. 36(10): p. 713-9. 304. Biesemann, N., L. Mendler, S. Kostin, et al., Myostatin induces interstitial fibrosis in the heart via TAK1 and p38. Cell Tissue Res, 2015. 361(3): p. 779-87. 305. Milani-Nejad, N. and P.M. Janssen, Small and large animal models in cardiac contraction research: advantages and disadvantages. Pharmacol Ther, 2014. 141(3): p. 235-49. 306. Suzuki, Y., A.C. Yeung, and F. Ikeno, The representative porcine model for human cardiovascular disease. J Biomed Biotechnol, 2011. 2011: p. 195483. 307. Lelovas, P.P., N.G. Kostomitsopoulos, and T.T. Xanthos, A comparative anatomic and physiologic overview of the porcine heart. J Am Assoc Lab Anim Sci, 2014. 53(5): p. 432-8. 308. Elashry, M.I., H. Collins-Hooper, S. Vaiyapuri, et al., Characterisation of connective tissue from the hypertrophic skeletal muscle of myostatin null mice. J Anat, 2012. 220(6): p. 603-11. 309. Agocha, A.E. and M. Eghbali-Webb, A simple method for preparation of cultured cardiac fibroblasts from adult human ventricular tissue. Mol Cell Biochem, 1997. 172(1-2): p. 195-8. 310. Voloshenyuk, T.G., E.S. Landesman, E. Khoutorova, et al., Induction of cardiac fibroblast lysyl oxidase by TGF-β1 requires PI3K/Akt, Smad3, and MAPK signaling. Cytokine, 2011. 55(1): p. 90-7. 311. Paek, H.J., Z.B. Luo, H.M. Choe, et al., Association of myostatin deficiency with collagen related disease-umbilical hernia and tippy toe standing in pigs. Transgenic Res, 2021. 30(5): p. 663-674. 312. Maquat, L.E., Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat Rev Mol Cell Biol, 2004. 5(2): p. 89-99. 313. Ning, B., F. Zhang, X. Song, et al., Cardiac contractility modulation attenuates structural and electrical remodeling in a chronic heart failure rabbit model. J Int Med Res, 2020. 48(10): p. 300060520962910. 314. Runyan, C.E., H.W. Schnaper, and A.C. Poncelet, The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-beta1. J Biol Chem, 2004. 279(4): p. 2632-9. 315. Hinton, D.E. and W.L. Williams, Hepatic fibrosis associated with aging in four stocks of mice. J Gerontol, 1968. 23(2): p. 205-11. 316. Gagliano, N., B. Arosio, D. Santambrogio, et al., Age-dependent expression of fibrosis-related genes and collagen deposition in rat kidney cortex. J Gerontol A Biol Sci Med Sci, 2000. 55(8): p. B365-72. 317. Calabresi, C., B. Arosio, L. Galimberti, et al., Natural aging, expression of fibrosis-related genes and collagen deposition in rat lung. Exp Gerontol, 2007. 42(10): p. 1003-11. 318. Lakatta, E.G. and D. Levy, Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part II: the aging heart in health: links to heart disease. Circulation, 2003. 107(2): p. 346-54. 319. Burlew, B.S., Diastolic dysfunction in the elderly-the interstitial issue. Am J Geriatr Cardiol, 2004. 13(1): p. 29-38. 320. Hanna, A., C. Humeres, and N.G. Frangogiannis, The role of Smad signaling cascades in cardiac fibrosis. Cell Signal, 2021. 77: p. 109826. 321. Qin, W., L. Cao, and I.Y. Massey, Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol Cell Biochem, 2021. 476(11): p. 4045-4059. 322. Chen, X., G. Liu, W. Zhang, et al., Inhibition of MEF2A prevents hyperglycemia-induced extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts. Int J Biochem Cell Biol, 2015. 69: p. 52-61. 323. Liu, J.C., F. Wang, M.L. Xie, et al., Osthole inhibits the expressions of collagen I and III through Smad signaling pathway after treatment with TGF-β1 in mouse cardiac fibroblasts. Int J Cardiol, 2017. 228: p. 388-393. 324. Cohn, R.D., H.Y. Liang, R. Shetty, et al., Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscul Disord, 2007. 17(4): p. 290-6. 325. Csibi, A. and J. Blenis, Hippo-YAP and mTOR pathways collaborate to regulate organ size. Nat Cell Biol, 2012. 14(12): p. 1244-5. 326. Chen, W. and N.G. Frangogiannis, The role of inflammatory and fibrogenic pathways in heart failure associated with aging. Heart Fail Rev, 2010. 15(5): p. 415-22. 327. Jiang, W., Y. Xiong, X. Li, et al., Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front Cardiovasc Med, 2021. 8: p. 715258. |
开放日期: | 2022-12-09 |