论文题名(中文): | 基于α-葡萄糖苷酶抑制作用的人参花复合饮品制备及工厂设计 |
作者: | |
学号: | 2022050894 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095135 |
学科名称: | 农学 - 农业推广 - 食品加工与安全 |
学生类型: | 专业硕士 |
学位: | 农业硕士 |
学校: | 延边大学 |
院系: | |
专业: | |
第一导师姓名: | |
第一导师学校: | |
论文完成日期: | 2024-07-20 |
论文答辩日期: | 2024-07-26 |
论文题名(外文): | Preparation of Ginseng flower complex drink based on α-glucosidase inhibition and factory design |
关键词(中文): | |
关键词(外文): | ginseng flower α-glucosidase Compound beverage Sensory evaluation Plant design |
论文文摘(中文): |
在当前全球范围内,糖尿病已经成为一种严重的慢性疾病,其发病率不断增加与现代生活方式和不健康饮食习惯有着密切的关系。因此,对于预防和管理糖尿病,降低血糖水平显得尤为重要。人参花是一种珍贵的植物,含有人参皂苷、多糖、蛋白质、黄酮等多种功效成分,具有类似人参的功效,如抗氧化、抗疲劳和降血糖等。人参花味苦、性偏凉。已有报道利用人参花研究的发酵饮品、人参花大枣复合饮料、人参花菊花复合饮料等。因此,本研究以人参花为主要原料,探究其与其他原料复合时对α-葡萄糖苷酶的抑制作用;通过添加食品添加剂制备人参花复合饮品;并进行饮品成分、营养素、风味等分析;最终对生产饮品的工厂进行初步设计。研究结果如下: 1. 原料筛选及样品液的制备。依据对α-葡萄糖苷酶的抑制作用,本研究从人参花等15种原料中通过单一以及复合等方式筛选出最佳原料组合样品液。结果得出,以人参花、山楂、苦瓜和玉米须四种原料组合制备的样品液对α-葡萄糖苷酶有最佳的抑制效果,抑制率达96%。此时样品液中功效成分含量总糖为8.318±0.312 mg/mL、总皂苷为7.628±1.362 μg/mL、总黄酮为1.078±0.2 mg/mL以及总酚为19.282±0.540 mg/mL。相关性分析得出,α-葡萄糖苷酶的抑制率与人参花样品液中总皂苷和总酚含量呈显著正相关(P < 0.05)。 2. 人参花复合饮品的制备及配方优化。以感官评分为指标,在上述确定得出的四种原料组合样品液以及人参花单一样品液为基础,考察不同食品添加剂不同添加量对人参花饮品的感官影响;并在单因素试验结果基础上利用响应面法优化饮品的配方。结果得出,当食品添加剂复合使用时,感官评分优于添加剂单独使用时的效果;复合的甜味剂为木糖醇和麦芽糖,比例为8:2;复合的酸味剂为柠檬酸和苹果酸,比例为4:6;复合的酶为木瓜蛋白酶和中性蛋白酶,比例为8:2。人参花饮品响应面法优化最佳配方为:甜味剂添加量4.75%、酸味剂添加量0.06%、酶添加量0.09%。人参花复合饮品响应面法优化最佳配方为:甜味剂添加量5.14%、酸味剂添加量0.06%、酶添加量为0.04%。 3. 人参花饮品中功效成分及营养素等分析。研究了优化条件下制备的人参花饮品对α-葡萄糖苷酶的抑制作用;测定了功效成分、营养素等指标;并利用电子鼻和电子舌对饮品风味进行了分析。结果得出,人参花饮品与人参花复合饮品对α-葡萄糖苷酶的抑制率分别达到57.14%和65.77%,与阿卡波糖2.0-2.5 mg/mL浓度抑制率接近;人参花饮品中功效成分含量总皂苷为7.410±0.37 μg/mL、总黄酮为0.389±0.15 mg/mL、总酚为5.718±0.72 mg/mL、总糖为3.928±0.79 mg/mL;人参花复合饮品中功效成分含量总皂苷为7.147±0.38 μg/mL、总黄酮为1.08±0.22 mg/mL、总酚为8.257±0.70 mg/mL、总糖为3.818±0.71 mg/mL。营养素测定得出,人参花饮品及人参花复合饮品中蛋白质含量均为0.1 mg/100 mL、脂肪含量均为0 mg/100 mL、碳水化合物含量分别为3.87 mg/100 mL和3.64 mg/100 mL、钠含量分别为14 mg/100 mL和8 mg/100 mL、能量分别为67 KJ/100 mL和64 KJ/100 mL,符合低糖、低脂、低能量饮品;电子鼻和电子舌分析发现人参花饮品和人参花复合饮品的风味、滋味存在差异;人参花复合饮品中苦涩味比人参花饮品有所降低,并以甜味和酸味为主要特征。 4. 年产2000吨人参花复合饮品工厂设计。进行了厂址选择,设计了工厂布局、工艺流程,进行了物料衡算、设备选型;设计了生产车间布局;进行了水电汽估算;经济技术分析得出,年产2000吨人参花复合饮品工厂,全厂年总投资为1162万元,每年产值为4000万元,全厂年纯利润为1576.3万元,预计工厂投资回收期为3年。 |
文摘(外文): |
In the current global scale, diabetes has become a serious chronic disease, its increasing incidence is closely related to modern lifestyles and unhealthy eating habits. Therefore, for the prevention and management of diabetes, lowering blood sugar levels is particularly important. Ginseng flower is a precious plant, containing ginsenosides, polysaccharides, proteins, flavonoids and other functional components, with similar effects, such as anti-oxidation, anti-fatigue and lowering blood sugar. Ginseng flowers taste bitter and cool. There have been reports on the use of ginseng flower research fermented drinks, ginseng flower jujube complex drink, ginseng flower chrysanthemum complex drink and so on. Therefore, in this study, ginseng flower was used as the main raw material to explore its inhibition effect on α-glucosidase when combined with other raw materials. The ginseng flower complex drink was prepared by adding food additives. The ingredients, nutrients and flavor of the beverage were analyzed. Finally, the preliminary design of the factory for the production of drinks was carried out. The results are as follows: 1. Screening of raw materials and preparation of sample solution. According to the inhibition effect of α-glucosidase, the best combination of raw materials was selected from 15 raw materials such as ginseng flower by single and compound methods. The results showed that the sample solution prepared by the combination of ginseng flower, hawthorn, bitter melon and corn beard had the best inhibition effect on α-glucosidase, and the inhibition rate was 96%. At this time, the content of functional components in the sample solution was 8.318±0.312 mg/mL, 7.628±1.362 μg/mL, 1.078±0.2mg/mL, and 19.282±0.540 mg/mL. Correlation analysis showed that α-glucosidase inhibition rate was significantly positively correlated with total saponins and total phenol contents in ginseng flower sample liquid (P < 0.05). 2. Preparation and formulation optimization of ginseng flower complex drink. The sensory effects of different food additives on ginseng flower drink were investigated based on the four kinds of raw material combination sample solution and ginseng flower single sample solution. On the basis of single factor test results, response surface method was used to optimize the formula of the beverage. The results showed that when food additives were used together, the sensory score was better than that when additives were used alone. The compound sweeteners were xylitol and maltose, the ratio was 8:2. The compound sour agent was citric acid and malic acid, the ratio was 4:6; The complex enzymes were papain and neutral protease with a ratio of 8:2. The optimal formula of ginseng flower drink by response surface method was as follows: sweetener content 4.75%, acid flavor content 0.06%, enzyme content 0.09%. The optimal formula of ginseng flower complex drink by response surface method was as follows: sweetener content was 5.14%, sour agent content was 0.06%, enzyme content was 0.04%. 3. Analysis of functional components and nutrients in ginseng flower drinks. The inhibitory effect of ginseng flower drink prepared under optimized conditions on α-glucosidase was studied. The indexes of functional components and nutrients were determined. The flavor of the beverage was analyzed by electronic nose and electronic tongue. The results showed that the α-glucosidase inhibition rates of ginseng flower drink and ginseng flower compound drink were 57.14% and 65.77%, respectively, which were close to the inhibition rates of acarbose concentration of 2.0-2.5 mg/mL. The contents of total saponins, total flavonoids, total phenols and total sugars were 7.410±0.37 μg/mL, 0.389±0.15 mg/mL, 5.718±0.72 mg/mL and 3.928±0.79 mg/mL respectively. The contents of total saponins, total flavonoids, total phenols and total sugars were 7.147±0.38 μg/mL, 1.08±0.22 mg/mL, 8.257±0.70 mg/mL and 3.818±0.71 mg/mL respectively. Nutrient measurements showed that, The protein content of ginseng flower drink and ginseng flower complex drink were 0.1 mg/100 mL, fat content was 0 mg/100 mL, carbohydrate content was 3.87 mg/100 mL and 3.64 mg/100 mL, and sodium content was 14 mg/100 mL and 8 mg/100 mL, respectively mL and energy are 67 KJ/100 mL and 64 KJ/100 mL respectively, which is in line with low sugar, low fat and low energy drinks. Electronic nose and electronic tongue analysis showed that the flavor and taste of ginseng flower drink and ginseng flower compound drink were different. The bitter and astringent taste of ginseng flower compound drink is less than that of ginseng flower drink, and the main characteristics are sweet and sour taste. 4. Design of ginseng flower compound beverage factory with an annual output of 2000 tons. The factory site was selected, the factory layout and process were designed, and the material balance and equipment selection were carried out. Design the layout of production workshop; The estimation of water, electricity and steam is carried out. Economic and technical analysis shows that the annual output of 2000 tons of ginseng flower complex drinks factory, the total annual investment of the factory is 11.62 million yuan, the annual output value is 40 million yuan, the annual net profit of the factory is 15.76 million yuan, and the payback period of the factory investment is expected to be 3 years. |
参考文献: |
[1]满枋霖,孙新,田丹,等. 人参花药理药效的研究进展. 特种经济动植物,2019,22(6):2
﹀
[2]白钰. 人参花发酵饮品工艺优化及其抗氧化活性研究:[硕士学位论文]. 吉林:吉林农业大学,2019 [3]潘小玲,李振麟,钱士辉,等. 中国人参花化学成分研究. 中国野生植物资源,2014,33(02):13-15 [4]白钰,张益恺,徐芳菲,等. 人参花化学成分研究进展. 人参研究,2021,33(05):54-58 [5]Jia Li, Wang Hongda, Xu Xiaoyan, et al. An off-line three-dimensional liquid chromatography/Q-Orbitrap mass spectrometry approach enabling the discovery of 1561 potentially unknown ginsenosides from the flower buds of Panax ginseng, Panax quinquefolius and Panax notoginseng. Journal of Chromatography A,2022,45(1):163-175 [6]Sung kWon Ko, Ok Sun Cho, Hye Min Bae, et al. Quantitative analysis of ginsenosides composition in flower buds of various ginseng plants. Journal of the Korean Society for Applied Biological Chemistry,2011,54(1):154-157 [7]Christensen L P. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Advances in Food and Nutrition Research,2009,55:1-99 [8]Yahara S, Matsuura K, Kasai R, et al. Saponins of buds and flowers of Panax ginseng C. A. Meyer. (1). Isolation of ginsenosides Rd, Re, and Rg1. Chemical and Pharmaceutical Bulletin,1976,24(12):3212-3213 [9]Yahara S, Kaji K, Tanaka O. Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax ginseng C. A. Meyer. Chemical & harmaceutical Bulleti,1979,27(01):88-92 [10]邵春杰,徐景达,姜锡昆,等. 人参花蕾中四环三萜皂甙的化学研究. 高等学校化学学报,1984,(05):674-676 [11]邵春杰,徐景达,姜锡昆,等. 人参花蕾的化学成分研究——人参皂甙 Rb3 和 Rc 的分离与鉴定. 中国中药杂志,1984,(04):28-29 [12]邵春杰,徐景达,姜锡昆,等. 吉林人参花蕾化学成分的研究(一)-人参皂甙 Rg2、Re 和 Rd 的分离与鉴定. 吉林大学学报(医学版),1985,(02):142-145 [13]邵春杰,徐景达. 吉林人参花蕾的化学研究(4)人参皂甙 Ro、Rb1、Rf、Rg1 的分离与鉴定. 白求恩医科大学学报,1987,(05):399-403 [14]ChunJie S. Chemical constituents of flower-buds of Panax ginseng-isolation and identification of ginsenoside-Rb3 and ginsenoside-Rc. Zhong yao tong bao(Beijing,China:1981),1984,09(04):172-173 [15]王红燕,裴玉萍,陈英杰. 人参花蕾化学成分研究. 中国药物化学杂志,1992,(02):31-35 [16]邱峰,马忠泽,裴玉萍,等. 人参花蕾化学成分的研究. 中国药物化学杂志,1998,(03):205-208 [17]邱峰,马忠泽,徐绥绪,等. 人参花蕾中的新皂苷. 中国药物化学杂志,1998,(04):285-287 [18]Feng Q, ZhongZe M, SuiXu X, et al. Studies on dammarane-type saponins in the flowerbuds of Panax ginseng C. A. Meyer. Journal of Asian natural products research,1998,1(02):119-123 [19]Yoshikawa M, Sugimoto S, Nakamura S, et al. Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds of Panax ginseng. Chemical & Pharmaceutical Bulletin,2008,55(04):571-576 [20]Yoshikawa M, Sugimoto S, Nakamura S, et al. Medicinal flowers. XVI.New dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng. Chemical & Pharmaceutical Bulletin,2008,55(07):1034-1038 [21]Nguyen H T, Song G Y, Kim J A, et al. Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorganic & Medicinal Chemistry Letters,2010,20(1):309-314 [22]Tung N H, Song G Y, Nhiem N X, et al. Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. Journal of agricultural and food chemistry,2010,58(2):868-874 [23]Nakamura S, Sugimoto S, Matsuda H, et al. Structures of dammaranetype triterpene triglycosides from the flower buds of Panax ginseng. Heterocycles,2008,71(03):577-588 [24]Wang Y S, Jin Y P, Gao W, et al. Complete(1)H-NMR and(13)C-NMR spectral assignment of five malonyl ginsenosides from the fresh flower buds of Panax ginseng. Journal of Ginseng Research,2016,40(3):245-250 [25]李沙沙. 人参花蕾中化学成分及其稀有皂苷分离工艺的研究:[硕士学位论文]. 大连:大连大学,2017 [26]杨文婧,田鑫雨,金悦,等. 人参花中功效成分及功效作用研究进展. 农业与技术,2021,41(15):12-15 [27]刘亚鹏. 人参皂苷Rd对人胃癌细胞的抑制作用及机制研究:[硕士学位论文]. 兰州:兰州大学,2019 [28]郭晓萌. 黑参皂苷的提取及生物活性研究:[硕士学位论文]. 天津:天津科技大学,2022 [29]张建中,张领,李冬梅,等. 人参果总皂苷试治疗糖尿病肾病患者蛋白尿的临床研究. 中西医结合学报,2005,3(6):1851-1858 [30] Xue JT,Mehendale SR,Li X,et al. Anti-diabetic effect of ginsenoside Re in ob /ob mice. Biochimica et Biophysica Acta,2005,1740(3):319-325 [31]Cho WCS, Chung WS, Lee SkW, et al. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. European Journal of Pharmacology,2006,550(1-3):173-179 [32]Attele AS, Zhou YP, Xie JT, et al. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes,2002,51(6):1851-1858 [33]张冰,陈晓辉,毕开顺,等. 三七花蕾化学成分的分离与鉴定. 沈阳药科大学学报,2009,26(10):775-777 [34]Meng X Y, Li X G, Tian Y X, et al. Identification of the flavone in the flower bud of Panax quinquefolium and its content determination in the different parts. Chem Res Chin Univ,2001,17(1):121-126 [35]都宏霞,陶劲强,王翔,等. 响应面优化人参花黄酮提取工艺及抗氧化活性. 食品工业科技,2018,39(12):216-221+230 [36]李珂珂,弓晓杰. 人参花蕾中的酰化黄酮醇苷类化合物及其α-葡萄糖苷酶抑制活性. 中草药,2019,50(10):2285-2289 [37]Lee C R, Whang W K, Shin C G, et al. Comparison of Ginsenoside Composition and Contents in Fresh Ginseng Roots Cultivated in Korea, Japan, and China at Various Ages. Journal of Ginseng Research,2012,36(4):425-429 [38]罗丹,黄云,罗敏,等. 人参叶多酚 GLP-8 调控 AhR/NLRP3 信号通路抑制 BaP 诱导的气道上皮细胞炎症因子过表达. 现代食品科技,2022,38(06):9-19+73 [39]Preeti Sharma, Younis Ahmad Hajam, Rajesh Kumar, Seema Rai, Complementary and alternative medicine for the treatment of diabetes and associated complications: A review on therapeutic role of polyphenols,Phytomedicine Plus,Volume 2,Issue 1,2022,100188,ISSN 2667-0313 [40]陈瑞战,谭莉,陆娟,等. 提取方法对人参花多糖得率、特征及抗氧化活性影响研究. 食品科技,2018,43(09):250-256 [41]王冰清. 人参花多糖的分离纯化、结构分析以及对淋巴细胞增殖的作用:[硕士学位论文]. 长春:东北师范大学,2008 [42]韩丹. 人参花酸性多糖 GFLA-1 的纯化及其分析:[硕士学位论文]. 长春:东北师范大学,2011 [43]吴平. 人参花多糖测定方法研究. 人参研究,2016,28(06):20-22 [44]Zhou X,Wang D,Sun P,et al. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice. J Agric Food Chem,2007,55(14):5523-5528 [45]赵俊,王亚军. 人参多糖的化学与药理学研究进展. 国外医学中医中药分册,2004,26(2):79-81 [46]S.S. Zhou, J. Xu, M. Kong,et al. Synchronous characterization of carbohydrates and ginsenosides yields deeper insights into the processing chemistry of ginseng. Pharm. Biomed. nal.,145(2017),59-70 [47]李珂珂,门磊,弓晓杰,等. 人参花蕾中脂肪酸类化学成分的分离与鉴定. 中药材,2020,43(04):866-869 [48]潘小玲,李振麟,钱士辉,等. 中国人参花化学成分研究. 中国野生植物资源,2014,33(02):13-15 [49]肖阳,姜涛,韩燕燕等. 响应面法优化以 SPME-GC-MS 技术萃取人参花挥发性成分工艺的研究. 特产研究,2018,40(04):1-9 [50]王恩鹏. 人参花挥发油的质谱研究:[硕士学位论文]. 长春:长春中医药大学,2010 [51]张易,谢小花,陈静,等. 苦瓜、滁菊、花红复合饮料的研制. 湖南文理学院学报(自然科学版),2022,34(02):73-77 [52]张文丽,程振伟. 玉米须水晶梨复合保健饮料的研制. 食品工程,2023(03):18-21 [53]董宁光,王燕,郑书旗,等. 我国山楂产业现状与发展建议. 中国果树,2022(10):87-91 [54]国家药典委员会. 中华人民共和国药典:四部. 2020年版. 北京:中国医药科技出版社,2020 [55]Rababa'h M A, Yacoub A N O, El-Elimat T, et al. The effect of hawthorn flower and leaf extract ( Crataegus Spp.) on cardiac hemostasis and oxidative parameters in Sprague Dawley rats. Heliyon,2020,6(8):e04617 [56]Peng Y, Lou L L, Liu S F, et al. Antioxidant and anti-in⁃flammatory neolignans from the seeds of hawthorn. Bioor⁃ganic & Medicinal Chemistry Letters,2016,26(22):5501-5506 [57]Małgorzata T, Dorota N, Maria Z, et al. Effect of hawthorn berry pre-treatment and preservation methods on the extractability of color-determining compounds and selected antioxidative substances. LWT,2023,173 [58]Li Z X, Zhang J R, Zhang H, et al. Effect of different pro⁃cessing methods of hawthorn on the properties and emulsifi⁃cation performance of hawthorn pectin. Carbohydrate Polymers,2022,298 [59]王文越,吕琴,李珩玉,等. 山楂与野山楂的化学成分对比研究. 山东中医药大学学报,2021,45(5):672-679 [60]Cui L J, Liu M, Chang X Y, et al. The inhibiting effect of the Coptis chinensis polysaccharide on the type II diabetic mice. Biomed Pharmacother,2016,81:111-119 [61]Jiang S, Wang Y H, Ren D Y, et al. Antidiabetic mechanism of Coptis chinensis polysaccharide through its antioxidant property involving the JNK pathway. Pharm Biol,2015,53(7):1022-1029 [62]盖晓红,刘素香,任涛,等. 黄连的化学成分及药理作用研究进展. 中草药,2018,49(20):4919-4927 [63]田谷正男,胡莹,蒋凤珍,等. 黄连须多糖水浴提取工艺优化及体外抗氧化活性研究. 湖北民族大学学报:自然科学版,2022,40(2):142-149 [64]汪洪涛,郭亚楠. 罗汉果花枸杞复合饮料的研制. 农产品加工,2023(16):6-11 [65]陈红梅,王紫倩,任占冬,等. 富硒绞股蓝的抗氧化活性研究. 食品科技,2023,48(07):164-169 [66]范冬冬,匡艳辉,朱晶晶,等. 绞股蓝化学成分及其药理活性研究进展. 中国药学杂志,2017,52(5):342-352 [67]Park B C, BosiRe K O, Lee E S, et al. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cell. Cancer Letters,2005,218(1):81-90 [68]Cardenas C, Ques Ada A R, Medina M A. Effects of ursolic acid on different steps of the an giogenic process. Biochemical and Biophysical Research Communications,2004,320(2):402-408 [69]Huang P, Chen J L, Zhang L, et al. Effect of gypenoside on blood lipid and microalbuminuria in paitients with type 2 diabetes mellitus. China Journal of Modern Medicine,2007,17(2):206-207 [70]王艺霖. 桑葚干红酿造工艺及功能性成分的变化研究[硕士学位论文]. 南京:南京农业大学,2017 [71]LEE J S, KIM Y R, SONG I G, et al. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic β-cells against oxidative stress-induced apoptosis. Internationan Journal of Molecular Medicine,2015,35(2):405−412 [72]REN X X, SUN Y, GUO Q F, et al. Ameliorating effect of the total flavonoids of Morus nigra L. on prediabetic mice based on regulation of inflammation and insulin sensitization. Journal of Agricultural and Food Chemistry,2022,70(39):12484−12501 [73]杨婉媛,陈晓维,罗文珊,等. 桑葚的功效成分及加工利用研究进展. 中国果菜,2022,42(12):48−53,84 [74]韩晓云,陶雨婷,战佳莹,等. 桑葚发酵前后酚类组成变化及其抗氧化活性分析. 食品工业科技:1-13 [75]Yang Zhijun, Guo Zhenhao, Yan Jun, et al. Nutritional components, phytochemical compositions, biological properties, and potential food applications of ginger (Zingiber officinale): A comprehensive review. Journal of Food Composition and Analysis,2024:106057 [76]El Gayar M H, Aboromia M M, Ibrahim N A, et al. Effects of ginger powder supplementation on glycemic status and lipid profile in newly diagnosed obese patients with type 2 diabetes mellitus. Obesity Medicine,2019,14:100094 [77]Liang Zhenxu, Zhang Jingzheng, Xin Chao, et al. Analysis of edible characteristics, antioxidant capacities, and phenolic pigment monomers in Lilium bulbs native to China. Food Research International,2022,151:110854 [78]Hui Heping, Jin Hui, Yang Xiaoyan, et al. Fine structure and hypoglycemic effect of a galactoglucan from the bulbs of Lanzhou lily. International Journal of Biological Macromolecules,2024,254:127774 [79]Abelti A L, Teka T A, Bultosa G. Review on edible water lilies and lotus: Future food, nutrition and their health benefits. Applied Food Research,2023,3(1):100264 [80]Zelicha H, Yang Jieping, Henning S M, et al. Effect of cinnamon spice on continuously monitored glycemic response in adults with prediabetes: a 4-week randomized controlled crossover trial. The American Journal of Clinical Nutrition,2024,119(3):649-657 [81]Akilen R, PimLott Z, Tsiami A, et al. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition,2013,29(10):1192-1196 [82]Li Kun, Xia Tianshuang, Jiang Yiping, et al. A review on ethnopharmacology, phytochemistry, pharmacology and potential uses of Portulaca oleracea L. Journal of Ethnopharmacology,2023:117211 [83]Jalali J, Rahbardar M G. Ameliorative effects of Portulaca oleracea L.(purslane) on the metabolic syndrome: A review. Journal of Ethnopharmacology,2022,299:115672 [84]于娜,张丽敏,徐彤. 海带多糖的提取方法及生物活性研究. 食品安全导刊,2023,(28):138-140 [85]姜颖,刘剑英,蓝蕾. 海带多糖降糖作用的研究进展. 中国疗养医学,2016,25(07):690-692 [86]Zeng H Y, Qin L K, Liu X Y, et al. Increases of lipophilic antioxidants and anticancer activity of coix seed fermented by monascus purpureus. Foods,2021,10(3):566 [87]Zhang T, Xiao S Y, DING Z H, et al. Effects of superfine grinding on physicochemical properties and morphological structure of coix seed powders. Journal of Cereal Science,2021,102:103361 [88]Zhu F. Coix: Chemical composition and health effects. Trends in Food Science & Technology,2017,61160-175 [89]于中玉,黄佳琪,周凤霞. 正交试验优化薏米蛋白多肽制备工艺及其对小鼠降血糖作用的效果研究. 中国食品添加剂,2022,33(10):69-74 [90]李斌. 薏苡仁谷蛋白源ACE抑制肽的结构鉴定及其降压作用研究:[硕士学位论文]. 北京:北京中医药大学,2016:32-37 [91]Chen L C, Zhang S Y, Zi Y, et al. Functional coix seed protein hydrolysates as a novel agent with potential hepatoprotective effect. Food & Function,2020,11(11):9495-9502 [92]唐姗,孙佳明,张辉. 人参降糖活性的体外评价方法研究进展. 吉林中医药,2011,31(12):1246-1248 [93]CHIBA S. Molecular mechanism in alpha-glucosidase and glu-coamylase. Bioscience, Biotechnology, and Biochemistry,1997,61(8):1233-1239 [94]易菊阳,梁钰婷,陆兵,等. 高产α-葡萄糖苷酶黑曲霉的微波选育及发酵条件优化. 食品科学,2014,35(15):145-150 [95]Yi Juyang, Liang Yuting, Lu Bing, et al. Microwave breeding of Aspergillus niger with high α-glucosidase activity and optimization of its fermentation conditions. Food Science,2014,35(15):145-150 [96]王姜旺. 山楂、仙人掌和蔓越莓中的原花青素抑制四种消化酶的作用机制研究:[硕士学位论文]. 保定:河北大学,2023 [97]石博,万新建,关峰,等. 苦瓜皂苷最佳提取工艺优化及其对α-葡萄糖苷酶的抑制活性.食品研究与开发,2023,44(11):145-150 [98]张慧慧,李灿,刘会平,等. 肉桂多糖的提取纯化及体外抗氧化和降血糖活性分析. 食品工业科技,2024,45(07):15-24 [99]Shodehinde S A, Ademiluyi A O, Oboh G, et al. Contribu-tion of Musa paradisiaca in the inhibition of α-amylase, α-glucosi-dase and angiotensin-I converting enzyme in streptozotocin induced rats. Life Sciences,2015,133(15):8-14 [100]冯伟. 仙人掌枸杞叶应用于降糖保健饮品的研究现状与趋势. 食品安全导刊,2018(03):136 [101]Analavam, Debasisd, Baishakhid, et al. Mechanistic studies of lifestyle interventions in type 2 diabetes. World Journal of Diabetes,2020,3(12):201-207 [102]Yan Weichai, Wang Mingzhu, Zhang Genyi, et al. Interaction between amylose and tea polyphenols modulates the postprandial glycemic response to high-amylosemaize starch. Journal of Agriculture and Food Chemistry,2013,61(36):8608-8615 [103]Zeng Li, Zhang Guowen, Liao Yijing, et al. Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties. Food & Function,2016,7(9):3953-3963 [104]魏萍,曹俊岭,薛春苗,等. 金芪降糖片与不同中药组方比较治疗2型糖尿病的网状Meta分析. 中国药师,2022,25(02):295-306 [105]Chu J M T, Lee D K M, Wong D P K, et al. Ginsenosides attenuate methylglyoxal-induced impairment of insulin signaling and subsequent apoptosis in primary astrocytes. Neuropharmacology,2014,85:215-223 [106]郅丽超,张琳依,梁馨元,等. 天然活性成分对α-葡萄糖苷酶抑制作用的研究进展. 食品安全质量检测学报,2021,12(06):2276-2282 [107]刘蕊洁. α-葡萄糖苷酶抑制剂筛选平台的建立及其在天然产物中的应用研究:[硕士学位论文]. 广州:暨南大学,2021 [108]毕云枫,姜仁凤,王丽娜,等. α-葡萄糖苷合成酶的制备及其合成低聚糖的研究. 食品工业,2017,38(05):162-166 [109]胡蒋宁. 人参皂苷及七叶皂苷抗肥胖活性研究:[硕士学位论文]. 长春:吉林农业大学,2006 [110]武冬雪. 荷青花中总皂苷的提取工艺研究与单体皂苷的含量测定:[硕士学位论文]. 长春:吉林大学,2020 [111]任召珍,曾海英,吴晴晴,等. 五加科源保健食品中总皂苷含量测定方法研究. 山东化工,2021,50(16):113-116 [112]李幸穗,黄淑慧,郭俐麟. 紫外可见分光光度法测定化橘红中总黄酮的含量. 广州化工,2022,50(19):127-129 [113]崔福顺,李官浩,金清,等. 响应面法优化超声辅助提取人参茎叶总黄酮的工艺研究. 食品科技,2013,38(08):252-256 [114]吴晓晗,范明智,李学峰,等. 东北刺人参不定根总黄酮提取工艺的优化及其抗氧化活性的研究. 延边大学农学学报,2020,42(03):9-16 [115]席彩彩,徐云玲,戴关海,等. 中药材卷柏的分子鉴定及其总酚酸的含量测定. 浙江中医杂志,2021,56(10):773-775 [116]梁光纤,王华. 两种分光光度法测定茶类产品中茶多酚含量的比较. 化工管理,2021,(07):50-51+86 [117]王玥,陈洪国,史玉敏,等. 响应面法优化桂花发酵液及其抗氧化能力测定. 中南农业科技,2023,44(09):51-55 [118]王彦平,娄芳慧,陈月英,等. 苯酚-硫酸法测定紫山药多糖含量的条件优化. 食品研究与开发,2021,42(04):170-174 [119]李杰,田思雨,谭怡然,等. 山楂叶多糖提取工艺优化及体外抗氧化和抑菌活性研究. 食品工业,2023,44(04):91-95 [120]谭莉. 三七、人参不同部位中多糖提取及抗氧化活性研究:[硕士学位论文]. 长春:长春师范大学,2018 [121]王鹤. 绞股蓝黑果腺肋花楸复合饮料的研制及功能性评价:[硕士学位论文]. 沈阳:沈阳农业大学,2020 [122]张春蕊,董金泉,冯雪瑶,等. 玉米须多糖饮品的研究. 食品研究与开发,2014,35(17):9-13 [123]Xu Lei, Li Xiaomin, Lin Lichen, et al. Preparation process, composition and activity evaluation of Ginseng-Sea buckthorn functional drink. Journal of Functional Foods,2023,110:105866 [124]李彤昕. 人参膳食纤维活性研究及饮品开发:[硕士学位论文]. 长春:吉林农业大学,2021 [125]刘爱琴,赵洪山,叶双明,等. 叶黄素凝胶软糖的研制. 中国食品添加剂,2022,33(01):128-1331 [126]曹宇凡,黄伟,陈取明,等. 茶黄素-3,3'-双没食子酸酯对α-葡萄糖苷酶的抑制机制. 食品科学:1-12 [127]蔡婧. 高营养芦笋汁及其饮料的制备和体外消化酵解特性的研究:[硕士学位论文]. 成都:成都大学,2023 [128]崔鹏飞,李暮玥,宋春美,等. 年产500t玉米低聚肽粉工厂设计. 中国调味品,2024,49(02):121-128 [129]孙金梦. 鱼蛋白胶芒果糕的研发及工厂设计:[硕士学位论文]. 南昌:南昌大学,2022 [130]鲁巍巍. 人参降血糖活性成分研究:[硕士学位论文]. 长春:吉林农业大学,2004 [131]孙于庆,曾维丽. 玉米胡萝卜复合汁的研制. 食品科技,2012,37(12):86-89 [132]陈嘉钰. 海参肽饮品的制备、品质分析及设计:[硕士学位论文]. 锦州:渤海大学,2021 [133]向俊丞. 燕窝银耳饮品研制:[硕士学位论文]. 成都:西华大学,2020 [134]向宇. 枸杞汁饮料加工工艺研究及工厂设计:[硕士学位论文]. 武汉:华中农业大学,2017 [135]王京涛. 年耗35000吨鸭梨的综合加工厂初步设计:[硕士学位论文]. 济南:齐鲁工业大学,2020 [136]胡艺涵. 苦瓜功效成分提取制备及对α-淀粉酶和α-葡萄糖苷酶抑制效果研究:[硕士学位论文]. 武汉轻工大学,2021 [137]江震宇. 山楂降血糖、降血脂活性成分及机理初探:[硕士学位论文]. 金华:浙江师范大学,2019 [138]Guo Q, Chen Z, Santhanam R K, et al. Hypoglycemic effects of polysaccharides from corn silk (Maydis stigma) and their beneficial roles via regulating the PI3K/Akt signaling pathway in L6 skeletal muscle myotubes. International Journal of Biological Macromolecules,2019,121:981-988 [139]JIA Y, XUE Z, WANG Y, et al. Chemical structure and inhibition on α-glucosidase of polysaccharides from corn silk by fractional precipitation. Carbohydrate Polymers,2021,252:117185 [140]王成福,庞颂,李林,等. 糖醇解酒软糖的研制. 食品工业,2024,45(02):68-72 [141]刘丽. 脱苦处理对苦肠胆汁酸脱除效果及质构的影响:[硕士学位论文]. 无锡:江南大学,2021 |
开放日期: | 2024-08-18 |