- 无标题文档
查看论文信息

论文题名(中文):

 基于STEAM理念的高中物理教学设计与实施研究 —以吉林省舒兰市某高中为例    

作者:

 张珺淞    

学号:

 2020050033    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 045105    

学科名称:

 教育学 - 教育 - 学科教学(物理)    

学生类型:

 专业硕士    

学位:

 教育硕士    

学校:

 延边大学    

院系:

 理学院    

专业:

 学科教学(物理)    

第一导师姓名:

 崔雪梅    

第一导师学校:

 延边大学    

论文完成日期:

 2022-09-30    

论文答辩日期:

 2022-12-04    

论文题名(外文):

 Design and Implementation of Physics Teaching in Senior High School Based on STEAM Concept Research ——Take a high school in Shulan City, Jilin Province as an example    

关键词(中文):

 STEAM教育理念 高中物理 教学设计 综合能力    

关键词(外文):

 STEAM education concept High school Physics Teaching design Comprehensive ability    

论文文摘(中文):

综合型人才在当今社会的需求度越来越高,为培养学生的综合能力、适应时代需求,《义务普通高中物理课程标准(2022年版)》中新增了跨学科实践主题,能够紧密联系社会热点、工程实践以及日常的生活,旨在发展学生运用多学科知识对问题进行分析和解决的能力。因此以解决问题为导向,旨在提升学生实践能力、创新能力、共情迁移能力的综合性教育理念——STEAM教育理念成为进行教学设计的基本理念和应然选择。以提高学生综合能力为目标而建构的STEAM教育理念下高中物理教学设计的依据以及策略体系,为STEAM教育理念融入到高中物理教学设计提供理论参考。

本研究基于STEAM教育理念探索高中物理教学设计的理论与思路,并通过实践检验,以促进学生综合能力的提高。

本研究采用文献研究法、问卷调查法、访谈法、跨学科研究法和行动研究法,调查高中物理教学中融入STEAM理念的现状,构建以提高学生综合能力为目标而的STEAM教育理念下高中物理教学设计的依据以及策略体系,基于教学设计的依据以及策略体系进行高中物理教学设计与实施并检验其效果。通过研究得到如下结论:

(1)在我国高中教育阶段STEAM教育理念认可度高但实际融合少,普及率不高,融合教学效果不明显。主要体现在教学内容上并未使跨学科融合性得到充分的展现,没有关注在教学的整体流程中学生的体验感。

(2)依托建构主义理论、多元智能理论、行动学习理论和后现代主义教育理论以及教学设计的相关理论,构建了STEAM教育理念指导下的教学设计基本步骤:教学背景分析-教学目标-教学方法-学习活动-教学评价。

(3)通过行动研究验证了基于STEAM教育理念的教学设计是有效的,实施后提高了学生的综合能力。

根据教学设计与实施及反思,提出优化STEAM教育理念下高中物理教学设计的建议:

(1)高中物理在教学目标的制定方面必须关注科学思维的培养;

(2)选取教学内容时,要将多个学科的内容进行渗透和融合;

(3)在进行教学时,教师应当充分关注学生的主观能动性,不能忽略学生的体验感,在评价教学方面还需重点分析过程性评价的情况。

文摘(外文):

In order to cultivate students' comprehensive abilities and meet the needs of the times, the Compulsory General High School Physics Curriculum (2022 Edition) includes new interdisciplinary practical topics that can be closely related to social hotspots, engineering practices, and daily life, aiming to develop students' ability to analyze and solve problems using multidisciplinary knowledge. Therefore, the STEAM education concept, which is a problem-solving-oriented and comprehensive education concept aimed at improving students' practical skills, innovation and empathy transfer ability, has become a basic concept and a natural choice for teaching design. The rationale and strategy system of high school physics instructional design under the STEAM education concept is constructed with the goal of improving students' comprehensive abilities, which provides a theoretical reference for integrating the STEAM education concept into high school physics instructional design.

This study explores the theories and ideas of high school physics instructional design based on STEAM education concept and tests them through practice to promote students' comprehensive ability.

This study adopts literature research method, questionnaire survey method, interview method, interdisciplinary research method and action research method to investigate the current situation of integrating STEAM concept into high school physics teaching, construct the basis and strategy system of high school physics teaching design under STEAM education concept with the goal of improving students' comprehensive ability, design and implement high school physics teaching based on the basis and strategy system and test its effect. The following conclusions were obtained from the study.

(1) In China's high school education stage, STEAM education concept is highly recognized but little practical integration, the popularity rate is not high, and the effect of integrated teaching is not obvious. This is mainly reflected in the fact that the teaching content does not fully demonstrate the interdisciplinary integration and does not pay attention to the students' experience in the overall process of teaching.

(2) Relying on constructivism theory, multiple intelligence theory, action learning theory and postmodernism education theory as well as relevant theories of instructional design, the basic steps of instructional design under the guidance of STEAM education concept were constructed: teaching background analysis - teaching objectives - teaching methods - learning activities - teaching evaluation.

(3) The action research verified that the instructional design based on the STEAM education concept was effective and the implementation improved the students' overall ability.

Based on the instructional design and implementation and reflections, suggestions for optimizing the teaching design of high school physics under the STEAM education concept are proposed.

(1) High school physics must pay attention to the cultivation of scientific thinking in the formulation of teaching objectives.

(2) When selecting teaching contents, the contents of multiple disciplines should be penetrated and integrated.

(3) When conducting teaching, teachers should pay full attention to students' subjective initiative and not ignore students' sense of experience, and also focus on analyzing the process evaluation in terms of evaluating teaching.

参考文献:
普通高中物理课程标准修订组.普通高中物理课程标准(2017版)解读[M].北京:高等教育出版社,2018:45-59.
黄光扬.教育测量与评价[M].上海:华东师范大学出版社,2012.46.
2018年教育信息化和网络安全工作要点(下)[J].中国信息技术教育,2018(06):2-3.
刘晓陵,刘路,邱燕霞,金瑜,周隽.威廉斯创造力测验的信效度检验[J].基础教育,2016,13(03):51-58.
胡卫平,韩葵葵.青少年科学创造力的理论研究与实践探索[J].心理发展与教育,2015,31(01):44-50.
戢守志.美国国家科学教育标准[M].北京:科学技术文献出版社,1991:1-11.
[美]达西•哈兰德.中国科协青少年科技中心译.STEM项目学生研究手册[M].北京:科学普及出版社,2013.
梁森山.中国创客教育蓝皮书(基础教育版)[M].北京:人民邮电出版社,2016.
中国教育信息化网.《教育部关于印发“教育信息化“十三五”规划”的通知
(教技[2016]2号)》[DB/OL].2016.[2016-06-17] http://www.ict.edu.cn/laws/new/n20160617_34574.shtml.
项华,毛澄洁,熊晓燕.从物理学科教育走向STEAM融合教育一一中学物理教学创新之道[J].中小学数字化教学,2017(03):4-7.
杨珍珂,贾伟尧.基于STEAM教育理念的初中物理课程创新与案例设计[J].物理教学探讨,2018,36(03):21-22+24.
何赛君.高中物理教学设计的规范和创新[J].物理通报,2013(05):7-12
袁利平,张欣鑫.论STEAM教育与核心素养的对接[J].陕西师范大学学报(哲学社会科学版),2017,46(05):164-169.
林崇德.创造性人才·创造性教育·创造性学习[J].中国教育学刊,2000(01):5-8.
师保国,刘霞,余发碧.核心素养视域下的创新素养内涵及其落实[J].课程.教材.教法,2017,37(02):55-60
田世海,王宇奇,安宁.基于STEAM教育的大学生跨专业创新素养研究[J].黑龙江教育(高教研究与评估),2020(06):82-84
柳栋,吴俊杰,谢作如,等.STEM、STEAM与可能的实践路线[J].中小学信息技术教育,2013(06):39-41.
赵闪.STEAM教育探析[J].科技视界,2016(7):156.
胡畔,蒋家傅,陈子超.我国中小学STEAM教育发展的现实问题与路径选择[J].现代教育技术,2016(08):22-27.
吴昱寰.中小学STEM教育本土化策略探讨[J].课程教育研究,2016(26):241.
冯碧薇.STEM+本土化的实践探究[J].中国科技教育,2017(02):62.64.
余胜泉,胡翔.STEM教育理念与跨学科整合模式[J].开放教育研究,2015(04):13-22,
赵中建.21世纪技能之基石一一sTEM:美国教育战略的重中之重[J].上海教育,2012(11):14-19.
上官剑,李天露.美国STEM教育政策文本述评[J].高等教育研究学报,2015,38(2):64-72.
傅骞,刘鹏飞.从验证到创造一一中小学STEM教育应用模式研究[J].中国电化教育,2016(04):71-78.
梁荣华,王凌宇.“全球化创造性人才教育”理念下的韩国基础教育课程改革一一以2009年课程修订为中心[J].外国教育研究,2012(2):40-48.
任伟,李远蓉,马坤鹤,等.基于STEM教育下的中学化学教学模式初探[J].化学教与学,2015(07):10-12.
杨亚平.陈晨.美国中小学整合性STEM教学实践的研究[J].外国中小学教育,2016(05):58-64.
袁洋.一个有趣的STEM活动:做弹球[J].中国科技教育,2014(9):20-23.
李加林.杨晓平,童亿勤.跨学科综合型通识课程的教学理念与内容组织[J].临沂大学学报,2009.31(4):59-62.
徐晶晶.寻找创新支点上海STEM~+本土化的率先之探[J].上海教育,2015(13):32-37.
叶兆宁,杨元魁.集成式STEM教育:破解综合能力培养难题[J].人民教育,2015(17):62-66.
[30]赵军.PBL教学模式在外贸英语函电教学中的应用[J].齐齐哈尔师范高等专科学校学报,2014(2):156-157.
叶兆宁,朱丽娜,杨元魁.“集成式STEM”课程如何实现各领域的集成一以美国STEM课程单元《电梯》为例[J].人民教育,2016(12):C58-63.
吴晓梅.“问题驱动科学探究”模式在物理教学中的应用[J].中学理科园地,2014,10(4):3-5.
余胜泉,杨晓娟,等.基于建构主义的教学设计模式[J].电化教育研究,2000(12):7-13.
沪粤版物理八年级第三部分我们周围的物质[J].新课程:中考全程检测,2009(2):19-22.
陆伯鸿.课堂教学设计:基于课程标准,注重目标导向[J].上海教育,2015(4):8-15.
郭其芳.基于STEM教育的高中生物教学设计与实践[D].黔南民族师范学院,2018.
宋巧颖.基于STEM教育理念的中学化学教学设计与实践-以制作一面镜子为例[D].闽南师范大学,2018.
张雅雅.基于STEM教育理念的初中地理教学活动设计实证研究一一以兰州市九州中学为例[D].西北师范大学,2018.
张玉娴.追求公平和卓越一新世纪以来澳大利亚基础教育改革研究[D].上海:华 东师范大学,2015.
刘海艳.美国K-12阶段STEM教师专业发展研究[D].哈尔滨师范大学,2017.
彭志达.美国STEM教师教育政策文本分析[D].湖南师范大学,2016.
刘潇濛.美国麻省理工学院STEM研究生培养模式研究[D].河北大学,2018.
董莉.基于STEM教育理念的高中物理教学策略研究[D].四川师范大学,2017.
史颜君.基于STEAM理念的初中物理课程设计研究[D].广西师范大学,2017.
王坚.STEAM教育理念下的物理教学初探[D].华中师范大学,2017.
吴晓天.基于中学物理实验活动的STEM教育实践[D].内蒙古师范大学,2017
Edith Crawford.Science Framework for California Public Schools Kindergarte n Through Grade Twelve.[M]the California State Board of Education:the Califor nia Department of Education Sacramento,2004:23-278.
John Lynch.K-12 Science Literacy New Hampshire Curriculum Framework.[D B/OL]2006-9/2019.
W.Bertelsmann Verlag. Hauke Sturm Design, Perspektive MINT—Wegweiser fur MINT-Forderung und Karrieren in Mathematik, Informatik, Naturwissenschaf ten und Technik.Bundesministerium fur Bildung undForschung[M].Berlin: Bunde sministerium Fur Bildung Und Forschung,2012.
Kim s W.Lee Y.The Analysis on Research Trends in Programming based STEAM Education in Korea[J].2016,9(24).
Hunterdoniger T,Sydow L.A Journey from STEM to STEAM:A Middle School Case Study[J].ClearingHouse,2016,89:1-8,
Jho H.Hong O,Song J.An Analysis of STEM/STEAM Teacher Education in Korea with a Case Study of Two Schools from a Community of Practice Perspective. [J].Eurasia Journal of Mathematics Science&Technology Education,2016,12(71):1843-1862.
Edith Crawford.Science Framework for California Public Schools Kindergarten Through Grade Twelve.[M]the California State Board of Education:the California Department of Education Sacramento,2004:23-278.
John Lynch.K-12 Science Literacy New Hampshire Curriculum Framework.[DB/OL]2006-9/2019.
Connor A M,Karmokar S,Whittington C.From STEM to STEAM: Strategies for Enhancing Engineering&Technology Education[J].International Journal of Engineering Pedagogy,2015,5(2):37-47.
MEET Statistics Quarterly Brief October to December 2015,England.
National curriculum assessments at key stage 2 in England,2015 (revised).
Miller, J. D. Seientific litcracy :A conccptual and empirical rcv iew[J].Daedalus, 1983, 1 12(2):29-48.
Kim Y,Ji S, Jung S, et al. Semantic Enrichment of Twitter News for Differentiated STEAM Education[C] IEEE International Conference on Big Data and Smart Computing. IEEE Computer Society, 2018:487-490.
Choi G Y, Behm-Morawitz E. Giving a new makeover to STEAM: Establishing YouTube beauty gurus as digital literacy educators through messages and effects on viewers[J]. Computers in Human Behavior, 2017, 73:80-91.
Birt J. Cowling M. Toward Future Mixed Reality Learning Spaces for STEAM Education[J]. International Journal of Innovation in Science & Mathematics Education. 2017. 25(4).
Chen Y K, Chang c c. Exploring the Development and Evaluation of Integrating Emerging Technology into a STEAM Project[M] Emerging Technologies for Education. 2017.
Kim J o, Kim J. Design of Maker-Based STEAM Education with Entry Programming Tool[J]. Advanced Science Letters, 2018. 24(3):2088 2093.
Kim J o, Kim J. Development and Application of 'Art Bascd STEAM Education Program Using Educational Robot[J].International Journal of Mobile & Blended Learning, 2018, 10(3):46-57.
Herro D, Quigley c. Exploring tcachers' perceptions of STEAM teaching through professional development: implications for teacher educators[J]. Professional Development in Education, 2017, 43:1-23.
Kim D, Bolger M. Analysis of Korean Elementary Pre- Service Tcachers' Changing Attitudes About Integrated STEAM Pedagogy Through Developing Lesson Plans[J]. International Journal of Science & Mathematics Education, 2016,15(4):1-19.
Bahrum S, Wahid N, Ibrahim N. Integration of STEM Education in Malaysia and Why to STEAM[J]. International Journal of Academic Research in Business & Social Sciences, 2017, 7(6).
Roberts A. STEM Is Here. Now What?.[J]. Technology & Engineering Teacher, 2013, 73:22-27.
Drake K N, Long D. Rebecca's in the dark: A comparative study of problem-based learning and direct instruction/experiential learning in two 4th-grade classrooms[]. Journal of Elementary Science Education, 2009, 21(1):1-16.
中华人民共和国教育部.普通高中物理课程标准(2020年修订版)[S].北京:人民教育出版社,2020:1-80.
开放日期:

 2022-12-10    

无标题文档