- 无标题文档
查看论文信息

论文题名(中文):

 红酵母对双乾肉羊生长性能、屠宰性能、肉品质及抗应激的影响    

作者:

 马铭君    

学号:

 2022050884    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095133    

学科名称:

 农学 - 农业推广 - 畜牧    

学生类型:

 专业硕士    

学位:

 农业硕士    

学校:

 延边大学    

院系:

 农学院    

专业:

 动物营养与饲料科学    

第一导师姓名:

 金花子    

第一导师学校:

 延边大学    

论文完成日期:

 2024-06-15    

论文答辩日期:

 2024-08-01    

论文题名(外文):

 The effect of Rhodotorula on the growth performance,slaughter performance, meat quality, and stress resistance of Shuangqian mutton sheep    

关键词(中文):

 双乾肉羊 红酵母 应激反应 屠宰性能 肉质性状    

关键词(外文):

 Double dried meat sheep Red yeast Stress response Slaughtering performance Meat quality traits    

论文文摘(中文):

红酵母是一类以芽殖为主、形态构造简单的单细胞真菌,其代谢产物不仅无毒无害,而且包含不饱和脂肪酸、维生素及类胡萝卜素等人和动物正常代谢必需营养物质,其菌体蛋白还是优质饲料蛋白质。

本文共计两个试验,试验一是红酵母饲喂试验,主要测定在饲粮中添加不同比例红酵母对双乾肉羊的育肥性状(平均日增重)、胴体性状(胴体重、净肉率)、肉质性状(pH、肉色、肉嫩度、滴水损失、眼肌面积),氨基酸及总脂肪酸中n-3,n-6类脂肪酸占比情况等指标的影响。

试验一具体分组如下:选取27只二月龄双乾肉羊羔羊进行试验,依照日粮中红酵母添加量的比例将体重接近性别随机的双乾肉羊羔羊随机划分到三组,每组9只。按照不同红酵母添加量分组,其中对照组不添加红酵母,1 %红酵母添加组在配合饲料中按1 %质量比例添加红酵母,2 %红酵母添加组在配合饲料中按2 %质量比例添加红酵母。基础日粮组成为羊草加配合饲料。

试验二为红酵母消化试验,旨在测定断奶应激期间不同红酵母添加量对双乾肉羊表观消化率的影响。

试验二选取18只平均体重30 kg的健康公羔羊18头,采用单因子试验设计, 18只试验羊随机分为3组,每组6只。试验分为对照组(基础日粮);1 %红酵母添加组:饲喂基础日粮+1 %红酵母;2 %红酵母添加组:饲喂基础日粮+2 %红酵母.基础日粮同试验一。

试验结果如下:饲喂2 %红酵母添加组饲料60-90 d平均日增重显著高于对照组(P>0.05),1 %红酵母添加组与2 %红酵母添加组在全期平均日增重之间无显著差异(P<0.05);肉质性状,pH(24 h)对照组显著高于1 %红酵母添加组,2 %红酵母添加组与1 %添加组组间差异差异不显著;滴水损失(24 h),对照组显著高于1 %红酵母添加组(P<0.05),1 %红酵母添加组与2 %红酵母添加组组间差异不显著;屠宰性状,胴体率1 %红酵母添加组显著高于2 %红酵母添加组(P<0.05);对照组胴体率与1 %,2 %红酵母添加组差异不显著;氨基酸水平对照组与1 %,2 %红酵母添加组均差异不显著;饱和脂肪酸中月桂酸1 %红酵母添加组显著高于2 %红酵母添加组(P<0.05);二十一烷酸1 %红酵母添加组显著高于对照组及2 %红酵母添加组(P<0.05);二十二烷酸2 %红酵母添加组及对照组显著高于1 %红酵母添加组(P<0.05);其余指标没有显著差异.不饱和脂肪酸中反亚麻酸2 %红酵母添加组及对照组显著高于1 %红酵母添加组(P<0.05);亚麻酸2 %红酵母添加组显著高于1 %红酵母添加组(P<0.05);顺-11-二十碳烯酸2 %红酵母添加组显著高于2 %红酵母添加组(P<0.05);顺-11,14,17-二十碳三烯酸2 %红酵母添加组显著高于1 %红酵母添加组(P<0.05);神经酸甲酯组间差异显著(P<0.05),对照组高于1 %红酵母添加组显著高于2 %红酵母添加组,干物质消化率1 %红酵母添加组显著高于对照组(P<0.05);有机物1 %红酵母添加组显著高于对照组(P<0.05);酸性洗涤纤维1 %红酵母添加组极显著高于对照组及2 %红酵母添加组(P<0.01),其余指标没有显著差异。

试验表明,1 %红酵母添加显著降低pH(24 h),增加了羊肉的保鲜能力;1%红酵母添加显著降低了羊肉滴水损失(24 h),增加了羊肉的系水力;1 %红酵母的添加缓解了断奶期由于换料导致的断奶应激,提高了应激期的干物质及有机物的表观消化率。2 %红酵母添加量显著增加了羊肉中n-3类亚麻酸的含量。研究表明了红酵母在双乾肉羊品种中的作用,为今后进行红酵母试验提供参考。

文摘(外文):

Red yeast is a type of single celled fungus that mainly produces spores and has a simple morphological structure. Its metabolites are not only non-toxic and harmless,but also contain essential nutrients such as unsaturated fatty acids,vitamins and carotenoids for normal animal metabolism. Its bacterial protein is also high-quality feed protein.

This article consists of two experiments. Experiment one is the red yeast feeding experiment,which mainly measures the effects of adding different proportions of red yeast to the feed on the fattening traits (average daily weight gain),carcass traits (carcass weight,net meat percentage), meat quality traits (pH,meat color, tenderness, drip loss,eye muscle area)and the proportion of omega-3 and omega-6 fatty acids in amino acids and total fatty acids of double dry meat sheep.

The specific grouping for Experiment 1 is as follows:27 two month old double dry lamb lambs were selected for the experiment. According to the proportion of red yeast added to the diet, the double dry lamb lambs with body weight close to gender were randomly divided into three groups, with 9 lambs in each group. According to different amounts of red yeast added, the control group did not add red yeast, group 1 added red yeast at a mass ratio of 1 % in the mixed feed, and group 2 added red yeast at a mass ratio of 2 % in the mixed feed. The basic composition of feed is sheep grass and compound feed.

Experiment 2 is a red yeast digestion test aimed at determining the effect of different amounts of red yeast added during weaning stress on the apparent digestibility of double dry meat sheep.

Experiment 2 selected 18 healthy male lambs with an average weight of 30 kg, using a single factor experimental design. The 18 experimental lambs were randomly divided into 3 groups, with 6 lambs in each group. The experiment was divided into a control group (basal diet); Experiment 1 group: fed with basic diet+1 % red yeast; Experiment 2: Feeding basic diet+2 % red yeast.

The experimental results are as follows: the average daily weight gain of the group fed with 2 % red yeast addition for 60-90 days was significantly higher than that of the control group (P>0.05), while there was no significant difference in average daily weight gain between the 1 % red yeast addition group and the 2 % red yeast addition group throughout the period (P<0.05); The meat quality and pH (24 h) of the control group were significantly higher than those of the 1 % red yeast addition group, while there was no significant difference between the 2 % red yeast addition group and the 1 % addition group; Drip loss (24 hours) was significantly higher in the control group than in the 1 % red yeast addition group (P<0.05), while there was no significant difference between the 1 % red yeast addition group and the 2 % red yeast addition group; The slaughter characteristics showed that the carcass rate of the 1 % red yeast added group was significantly higher than that of the 2 % red yeast added group (P<0.05); There was no significant difference in carcass rate between the control group and the 1 % and 2 % red yeast added groups; There was no significant difference in amino acid levels between the control group and the 1 % and 2 % red yeast addition groups; The content of lauric acid in saturated fatty acids was significantly higher in the 1 % red yeast addition group than in the 2 % red yeast addition group (P<0.05); The addition of 1 % red yeast to the group containing 21 octane acid was significantly higher than the control group and the 2 % red yeast addition group (P<0.05); The addition of 2 % red yeast and the control group were significantly higher than the addition of 1 % red yeast (P<0.05); There were no significant differences in other indicators. The levels of trans linolenic acid in unsaturated fatty acids were significantly higher in the 2 % red yeast addition group and the control group than in the 1 % red yeast addition group (P<0.05); The addition of 2 % red yeast with linolenic acid was significantly higher than that of 1 % red yeast (P<0.05); The addition of 2 % red yeast to the group containing cis-11-eicosenoic acid was significantly higher than that of the group containing 2 % red yeast (P<0.05); The addition of 2 % red yeast containing cis-11,14,17-eicosatrienoic acid was significantly higher than the addition of 1 % red yeast (P<0.05); There was a significant difference (P<0.05) in the levels of methyl methacrylate among the groups, with the control group significantly higher than the 1 % red yeast addition group and the 2 % red yeast addition group. The dry matter digestion rate of the 1 % red yeast addition group was significantly higher than that of the control group (P<0.05); The addition of 1 % red yeast to the organic matter group was significantly higher than the control group (P<0.05); The addition of 1 % red yeast to the acidic detergent fiber group was significantly higher than the control group and the 2 % red yeast addition group (P<0.01), while there were no significant differences in other indicators.

The experiment showed that the addition of 1 % red yeast significantly reduced pH (24 hours), increased the preservation ability of lamb,significantly reduced the drip loss of lamb (24 hours), and increased the water holding capacity of lamb; The addition of 1 % red yeast alleviated the weaning stress caused by material changes during the weaning period, while the addition of 2 % red yeast significantly increased the content of omega-3 linolenic acid in lamb. Research has shown the role of red yeast in the Double Dry Sheep breed, providing reference for future red yeast experiments.

参考文献:
参考文献
[1]司菊萍, 殷蔚申. 利用红酵母生产β—胡萝卜素的研究[J]. 郑州粮食学院学报 , 1992(4): 10-18+38.
[2]张晓君, 白玲, 张培栋, 等. 红酵母属RY菌株形成类胡萝卜素的研究[J]. 微生物学通报 , 1998(2): 82-84.
[3]王岁楼, 张平之. 从红酵母生产β—胡萝卜素的研究[J]. 山西食品工业 , 2000(2): 13-15+18.
[4]Rekha R, Nimsi KA, Manjusha K, etal. Marine yeast Rhodotorula paludigena VA 242 a pigment enhancing feed additive for the Ornamental Fish Koi Carp[J]. Aquaculture and Fisheries , 2024, 9(1): 66-70.
[5]张蕾. 海洋红酵母作为水产饲料添加剂的研发——评《饲料添加剂实用手册》[J]. 中国饲料 , 2021(20): 154
[6]蒋万春, 孙锡风, 杨俊琦, 等. 海洋红酵母对肉鸡生产性能、屠体性能及小肠形态结构的影响[J]. 中国饲料 , 2015(10): 15-19.
[7]王有丰, 鲍玉林, 扎西措. 微生态制剂对肉羊生长性能和营养物质消化率的影响[J]. 畜牧与兽医 , 2015, 47(8): 53-55.
[8]赵鑫, 姜文, 吴有林, 等. 酵母培养物的营养价值及其在反刍动物生产中的研究进展[J]. 饲料研究 , 2022, 45(20): 147-151.
[9]郑玮才, 郝小燕, 张春香, 等. 酿酒酵母和地衣芽孢杆菌对绵羊瘤胃体外发酵的影响[J]. 中国畜牧兽医 , 2019, 46(11): 3208-3215
[10]刘茵, 王志武, 赵鹏, 等. 活性干酵母对晋岚绒山羊生长性能、屠宰性能及血清生化指标的影响[J]. 中国畜牧兽医 , 2024, 51(7): 2810-2822.
[11]窦晓利, 范茂盛, 刘琦. 酵母培养物对黑山羊生长性能、养分表观消化率及肉品质的影响[J]. 饲料研究 , 2022, 45(14): 1-4.
[12]聂志武. 饲用益生菌[J]. 中国饲料 , 1998(5): 9-10
[13]D.chapman J, 徐辉. 益生菌及其发酵培养物在养猪生产中的新地位[J]. 浙江畜牧兽医 , 1990(4): 44-45
[14]郝生宏, 杨荣芳. 国内外益生菌生产应用现状[J]. 饲料研究 , 2004(6): 19-21
[15]白培钿, 孔佳美, 裴婷, 等. 复合微生态制剂对断奶仔猪生长性能、免疫机能及盲肠菌群结构的影响[J]. 中国畜牧兽医 , 2022, 49(3): 942-952.
[16]狄方馨. 复合酵母菌固态制剂对波尔山羊生长性能、屠宰性能及经济效益的影响[J]. 中国饲料 , 2020(5): 54-57
[17]李秀丽. 菌酶混合型饲料添加剂对肉牛生长性能和经济效益的影响[J]. 饲料研究, 2022, 45(4): 7-10
[18]李秀丽, 丁应龙, 孟宪国. 不同水平的酿酒酵母复合物对肉牛增重的影响[J]. 饲料研究, 2021, 44(9): 25-28
[19]王铎, 梁光哲, 张晓燕, 等. 饲粮中添加活性干酵母对断奶仔猪生长性能、营养物质表观消化率和血清免疫指标的影响[J]. 动物营养学报 , 2021, 33(5): 2949-2956.
[20]彭全辉, 岳双明, 王之盛, 等. 饲粮添加活性干酵母对肉牛营养物质表观消化率和瘤胃真菌菌群组成的影响[J]. 动物营养学报 , 2021, 33(8): 4456-4466.
[21]宣雄智, 李文嘉, 王志祥. 活性干酵母在牛生产中的应用研究进展[J]. 饲料研究 , 2023, 46(10): 159-162
[22]仲伟光, 祁宏伟, 闫晓刚, 等. 酵母菌制剂在调控犊牛瘤胃发育及免疫功能方面的应用[J]. 动物营养学报 , 2018, 30(6): 2085-2089
[23]罗斌, 乐科明, 陈代文, 等. 陈化玉米及谷胱甘肽酵母粉对断奶仔猪生长性能、养分表观消化率、血清抗氧化和免疫指标的影响[J]. 动物营养学报 , 2019, 31(4): 1574-1584
[24]来宁洁, 王宏, 苏双良, 等. 酵母肽和地衣芽孢杆菌对肉兔生长性能、养分表观消化率、屠宰性能、肉品质和肠道形态的影响[J]. 动物营养学报 , 2023, 35(1): 546-555.
[25]雷宇杰, 刘开放, 李峥, 等. 饲料添加酵母培养物对斑点叉尾鮰幼鱼生长性能、营养物质消化率、免疫性能和肠道菌群的影响[J]. 饲料研究 , 2020, 43(7): 52-57.
[26]卞宇豪, 许晓莹, 段志鹏, 等. 酵母培养物替代鱼粉对大口黑鲈生长性能、血清生化指标和肠道形态结构的影响[J]. 动物营养学报 , 2021, 33(9): 5182-5192
[27]孙锡凤, 蒋万春. 红酵母在动物生产中的应用研究进展[J]. 饲料研究 , 2014(15): 1-5+14.
[28]许坤一, 杨丽源, 王惠生. 红酵母属中的一个新种[J]. 真菌学报 , 1986(4): 235-239
[29]Sampaio JP. Rhodotorula Harrison (1928)[M]//Kurtzman C P, Fell J W, Boekhout T. The Yeasts (Fifth Edition) . London: Elsevier, 2011: 1873-1927.
[30]李明霞. 中国红酵母新种[J]. 微生物学报 , 1974, 14(2): 143-156.
[31]李臣, 阮榕生, 林向阳, 等. 红酵母的性质及其应用研究[J]. 农产品加工(学刊) , 2006(5): 20-22+25.
[32]Clinical Mycology[M]. Elsevier, 2009
[33]张晓君, 白玲, 张培栋, 等. 红酵母属RY菌株形成类胡萝卜素的研究[J]. 微生物学通报 , 1998(2): 82-84.
[34]魏艳敏, 钟辉, 刘钢, 等. 中国淡水红酵母(Rhodotorula Harrison)种类调查[J]. 南开大学学报(自然科学版) , 1997(3): 103-105
[35]周与良, 黄铁石, 但汉斌, 等. 中国海红酵母属 (Rhodotorula Harrison)的种类[J]. 南开大学学报(自然科学版) , 1999(4): 116-117
[36]Robinson RK, Batt CA, Patel PD. Encyclopedia of food microbiology[M]. San Diego: Academic Press, 2000
[37]Kurtzman CP, Fell JW, Boekhout T. The yeasts: a taxonomic study[M]. 5th ed. Amsterdam: Elsevier, 2011
[38]孔凡津. 给酵母给水产养殖业带来希望[J]. 饲料研究 , 1991(11): 11
[39]陈春道. 可提高养鱼效益的饲料添加剂[J]. 饲料研究 , 1999(5): 11
[40]席峰, 张春晓, 鲁康乐. 不同微生态制剂对海月水母生存与生长的影响[J]. 饲料研究 , 2019, 42(1): 15-20
[41]沈越, 张耀丹, 杨俊峰, 等. 饲料中添加产油红酵母菌株PR61干菌体对红鲫鱼生长性能及体色的影响[J]. 饲料研究 , 2023, 46(18): 36-40
[42]夏冬梅. 胶红酵母对凡纳滨对虾、罗非鱼、卵形鲳鲹生长、消化酶活力和免疫的影响[D]. 上海海洋大学, 2015
[43]蒋万春, 孙锡风, 杨俊琦, 等. 海洋红酵母对肉鸡生产性能、屠体性能及小肠形态结构的影响[J]. 中国饲料 , 2015(10): 15-19
[44]Kieliszek M, Kot AM, Kolotulo V. Bioaccumulation of selenium and production of carotenoids by the yeast Rhodotorula mucilaginosa[J]. Biocatalysis and Agricultural Biotechnology , 2023, 53: 102903
[45]Donald Co Mahan, 文杰, 肖玉. 有机硒可降低肉品的滴水损失[J]. 国外畜牧科技 , 1997(2): 40
[46]张忠, 时俊峰, 祝艳华, 等. 酵母硒联合枯草芽孢杆菌对肉羊生长性能、瘤胃发酵及屠宰性能的影响[J]. 中国饲料 , 2024(10): 23-26.
[47]和浩生, 李世强, 蒋姣平, 等. 饲粮中添加酵母硒和二羟基丙酮对山羊生长性能、营养物质表观消化率、屠宰性能、肉品质及血清生化、抗氧化指标的影响[J]. 动物营养学报 , 2024, 36(6): 3797-3810.
[48]Yang L, Yang A, Song L, et al. Formation of Sb2O3 microcrystals by Rhodotorula mucilaginosa[J]. Journal of Hazardous Materials , 2024, 469: 134082
[49]Sundaramahalingam Ma, Sivashanmugam P. Concomitant strategy of wastewater treatment and biodiesel production using innate yeast cell (Rhodotorula mucilaginosa) from food industry sewerage and its energy system analysis[J]. Renewable Energy , 2023, 208: 52-62
[50]吕转平, 唐思静, 苏晓月, 等. 饲用酵母对断奶前后犊牛生长性能、血清代谢物和瘤胃发酵性能的影响[J]. 中国饲料, 2021(14): 73-76
[51]仇武松, 王彦芦, 张振威, 等. 日粮添加产朊假丝酵母与枯草芽孢杆菌对湖羊生长性能及养分消化率的影响[J]. 中国畜牧杂志, 2017, 53(2): 106-109
[52]赵国宏, 王世国, 王芬, 等. 饲粮添加不同水平酵母培养物对育肥湖羊生长性能、屠宰性能、内脏器官发育及肉品质的影响[J]. 动物营养学报, 2020, 32(5): 2273-2281
[53]李春冬, 牧其尔, 杨玉珍, 等. 锡林郭勒草原羊肉熟肉率及剪切力的比较研究[J]. 中国饲料, 2023(8): 33-37
[54]生鲜猪牛鸡肉的实用品质客观评价方法和测定(PH、颜色、剪切力、保水性)
[55]刘振华. 猪肉肉质特性生物化学研究进展[J]. 国外畜牧科技,1996(6): 36-39+43
[56]许益民. 肌肉pH值变化在肉检中的应用[J]. 国外畜牧科技, 1983(5): 24-26
[57]Warner RD. Chapter 14 - The eating quality of meat: IV—Water holding capacity and juiciness[M]//TOLDRÁ F. Lawrie’s Meat Science (Ninth Edition) . Woodhead Publishing, 2023: 457-508
[58]王波, 罗海玲. 氧化反应对肌肉滴水损失的影响及抗氧化剂对其调控机制的研究进展[J]. 中国畜牧杂志, 2019, 55(6): 1-5
[59]P., Sellier, G ,etal. GENETICS OF PIG MEAT QUALITY: A REVIEW[J]. Journal of Muscle Foods, 1994
[60]Р .С.Негаметулин, 高龙. 屠宰时的胴体评定[J]. 国外畜牧学(草食家畜) , 1985(1): 34
[61]人民生活实现历史性跨越 阔步迈向全面小康——新中国成立70周年经济社会发展成就系列报告之十四 - 国家统计局[EB]
[62]张宏博, 靳烨. 国内外肉羊胴体分级标准体系的现状与发展趋势[J]. 肉类研究 , 2011, 25(4): 41-45
[63]羊胴体人工产量分级技术.北京市,中国农业科学院农产品加工研究所,2018-01-01.
[64]李铸, 吴锦波, 陈志荣, 等. 饲养模式对黑水色湾藏猪肌肉氨基酸的影响[J]. 西北农业学报 , 2022, 31(7): 823-829
[65]苏宜香, 郭艳. 膳食脂肪酸构成及适宜推荐比值的研究概况[J]. 中国油脂 , 2003(1): 31-34
[66]张玉伟, 罗海玲. 影响羊肉品质的因素及发展优质羊肉产业的对策[C]//2010中国羊业进展 . 中国畜牧业协会、全国畜牧总站、国家绒毛用羊产业技术体系, 2010: 3.
[67]张腱皓, 钟锐, 李荫柱, 等. 菌酶联用制剂对滩羊生长性能、养分表观消化率、瘤胃发酵参数及血清生化指标的影响[J]. 动物营养学报 , 2022, 34(7): 4562-4571
[68]郑玮才, 郝小燕, 张宏祥, 等. 酿酒酵母和地衣芽孢杆菌对绵羊生长性能和营养物质消化代谢的影响[J]. 动物营养学报 , 2020, 32(11): 5314-5321
[69]刘辉, 季海峰, 王四新, 等. 益生菌对生长猪生长性能、粪便微生物数量、养分表观消化率和血清免疫指标的影响[J]. 动物营养学报 , 2015, 27(3): 829-837
[70]汪成, 马健, 胡瑞, 等. 活性干酵母对西门塔尔杂交牛生长性能、营养物质表观消化率、瘤胃发酵参数及血清生化和抗氧化指标的影响[J]. 动物营养学报, 2021, 33(7): 3925-3933
[71]马嘉瑜, 龙沈飞, 朴香淑, 等. 产朊假丝酵母对断奶仔猪生长性能、血清免疫和抗氧化指标以及养分表观消化率的影响[J]. 动物营养学报 , 2022, 34(4): 2260-2271
[72]王四新, 季海峰, 刘辉, 等. 益生菌对育肥猪育肥后期生长性能、养分表观消化率、粪便菌群和短链脂肪酸的影响[J]. 动物营养学报 , 2022, 34(7): 4227-4236.
[73]王国洲, 吴峰洋, 于志凯, 等. 酵母菌-凝结芽孢杆菌联合发酵培养物对獭兔生长性能、养分表观消化率、免疫力及抗氧化能力的影响[J]. 动物营养学报 , 2022, 34(10): 6665-6676.
[74]AROWOLO MA, HE J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review[J]. Animal Nutrition , 2018, 4(3): 241-249
[75]TRIPATHI MK, KARIM SA. Effect of yeast cultures supplementation on live weight change, rumen fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing lamb[J]. Livestock Science , 2011, 135(1): 17-25
[76]Li S, Yoon I, Scott M, etal. Impact of Saccharomyces cerevisiae fermentation product and subacute ruminal acidosis on production, inflammation, and fermentation in the rumen and hindgut of dairy cows[J]. Animal Feed Science and Technology , 2016, 211: 50-60.
[77]谭健, 赵慧颖, 蒋林树, 等. 酵母培养物调控瘤胃功能的研究进展[J]. 动物营养学报 , 2024, 36(3): 1463-1472.
开放日期:

 2024-08-18    

无标题文档