- 无标题文档
查看论文信息

论文题名(中文):

 离子交换膜与改性纤维素海绵组合系统对水体中磷酸根的去除    

作者:

 鲁丹丹    

学号:

 2020050800    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095132    

学科名称:

 农学 - 农业推广 - 资源利用与植物保护    

学生类型:

 专业硕士    

学位:

 农业硕士    

学校:

 延边大学    

院系:

 农学院    

专业:

 资源利用与植物保护    

第一导师姓名:

 李光春    

第一导师学校:

 延边大学    

论文完成日期:

 2022-12-05    

论文答辩日期:

 2022-11-26    

论文题名(外文):

 THE REMOVAL OF PHOSPHATE IN WATER BY ION EXCHANGE MEMBRANE AND MODIFIED CELLULOSE SPONGE SYSTEM    

关键词(中文):

 离子交换膜 纤维素海绵 乙二胺 磷酸根 改性    

关键词(外文):

 ion exchange membrane cellulose sponge ethylenediamine phosphate modification    

论文文摘(中文):

由于磷的过量排放,对我国水环境造成了严重的污染,与其他除磷方法相比,生物法除磷的运行成本较低,并且可以同时进行脱氮除磷,且在最佳条件下对磷的去除率较高,但生物法除磷的效果不稳定,出水时可能无法达到磷的排放标准。为了解决这一问题,本研究利用阴阳离子交换膜的组合反应器,通过离子浓度强度差,构建出无动力的强化除磷反应器,达到低浓度含磷废水除磷的目的;并且以纤维素海绵为原料,通过环氧氯丙烷和乙二胺对其进行改性,制备成吸附除磷材料,用以加快反应器的除磷效果,同时达到回收磷的目的;探究不同因素对强化除磷反应器与改性纤维素海绵除磷效果的影响。
结果表明:强化除磷反应器中加入1% NaCl时,对于5.00 mg/L的磷酸根溶液,4 d去除率可以达到85%,5 d时可以达到92%,磷酸根的含量 < 0.5 mg/L,达到磷排放的一级标准;MgCl2和CaCl2溶液的除磷效果要优于NaCl,同种类的盐溶液,1%的盐溶液除磷效果优于3%和5%的盐溶液。同时,反应器温度在30℃时除磷效果为最佳;并且,磷酸根浓度越低,反应器除磷所需时间越短。对于模拟的生活废水,反应器除磷所需时间要稍长,但去除率仍可达到93%。
纤维素海绵的改性试验,首先进行了不同改性条件下,纤维素海绵的除磷实验,确定了各因素下的最优条件,对比单一最优条件和全部最优条件下,改性海绵对磷酸根的去除率,发现全部最优条件下改性的纤维素海绵(10 mL环氧氯丙烷,40℃,60 min;2 mL乙二胺,70℃,90 min),去除率更高,除磷效果更好。
未改性的纤维素海绵对磷去除率在3% ~ 6%,改性后的纤维素海绵对磷酸根的去除率可以达到91%,在30 min的时候,吸附速率最快,之后吸附速率迅速降低;温度则对于磷酸根的去除率影响较小;pH在5 ~ 7的范围内,改性海绵对磷酸根的去除率最高为76%;在溶液中充入CO2可以提高磷酸根的去除率,流速0.1 m/s,充入8 min,磷酸根去除率为78%。
将改性纤维素海绵与反应器相结合,对于5.00 mg/L的磷酸根溶液,3 d的去除率就可以达到90%,达到一级排放标准;对于直接处理生活废水,7 d后磷酸根残余量为0.45 mg/L,去除率达到92%。改性纤维素海绵加快了反应器的除磷效率。1 g改性海绵在2 h内,最大吸附量达到20.98 mg/L。
综上所述,离子交换膜与改性纤维素海绵组合系统,对于水体中磷酸根去除效果优异,对于解决生物处理废水中,末端低浓度磷去除难的问题,具有实践意义。
 

文摘(外文):

The excessive discharge of phosphorus has caused serious pollution to the water environment in China. Compared with other phosphorus removal methods, the operation cost of biological phosphorus removal is lower, and nitrogen and phosphorus can be removed simultaneously. Under the optimum conditions, the removal rate of phosphorus is higher. However, the effect of biological phosphorus removal is not stable, and may not meet the phosphorus discharge standard. In order to solve this problem, this study used the combined reactor of anion and cation exchange membrane to construct an unpowered enhanced phosphorus removal reactor through the difference of ion concentration intensity, so as to achieve the purpose of phosphorus removal from low concentration phosphorus-containing wastewater. Cellulose sponge, modified by epichlorohydrin and ethylenediamine, was prepared into adsorption phosphorus removal materials to accelerate the phosphorus removal effect of the reactor. At the same time, we achieved the purpose of recovery of phosphorus. The study investigated the effects of different factors on enhanced phosphorus removal reactor and modified cellulose sponge.
The results showed that when 1% NaCl was added into the enhanced phosphorus removal reactor, the removal rate of 5.00 mg/L phosphate solution can reach 85% in 4 days, while it can reach 92% in 5 days. Moreover, the content of phosphate was lower than 0.5 mg/L, which can meet the first standard of phosphorus emission. And the phosphorus removal effects of MgCl2 and CaCl2 solutions were better than that of NaCl. For the same kind of salt solution, the phosphorus removal effect of 1% salt solution was better than that of 3% and 5% salt solution. When the temperature of the reactor was 30℃, the phosphorus removal effect was the best. Moreover, the lower the phosphate concentration was, the shorter the time required for phosphorus removal. For simulated domestic wastewater, the time required for phosphorus removal in the reactor was slightly longer, but the removal rate can still reach 93%.
For the modification test of cellulose sponge, the phosphorus removal experiments of cellulose sponge under different modification conditions were first carried out. The optimal conditions under each factor were determined. The removal rate of phosphate under single optimal conditions and all optimal conditions was compared. The results showed that under all optimal conditions, the modified cellulose sponge(10 mL epichlorohydrin, 40℃, 60 min; 2 mL ethylenediamine, 70℃, 90 min), the removal rate was higher and the phosphorus removal effect was better.
The phosphorus removal rate of unmodified cellulose sponge was 3% ~ 6%, while its removal rate of phosphate of modified cellulose sponge can reach 91%. The adsorption rate was the fastest at 30 min, and then the adsorption rate decreases rapidly. Temperature had little the effect on the removal rate of phosphate. When the pH was in the range of 5 ~ 7, the removal rate of phosphate of modified sponge was up to 76%. Filling CO2 into the solution can also improve the removal rate of phosphate, with a flow rate of 0.1 m/s for 8 min, the removal rate of phosphate was 78%.
The modified cellulose sponge was combined with the reactor. For 5.00 mg/L phosphate solution, the removal rate was 90% in three days, which reached the national level emission standards. For treating domestic wastewater directly, the residual phosphate was 0.45 mg/L after seven days, and its removal rate reached 92%. Modified cellulose sponge has accelerated the phosphorus removal efficiency of the reactor. The maximum adsorption capacity of 1 g modified sponge reached 20.98 mg/L within 2 h. 
In summary, the combined system of ion exchange membrane and modified cellulose sponge had an excellent phosphate removal effect on water. It is of practical significance to solve the problem of difficult removal of low concentration phosphorus at the end of biological treatment wastewater.
 

参考文献:

[1] 崔丙健, 高峰, 胡超, 等. 非常规水资源农业利用现状及研究进展[J]. 灌溉排水学报, 2019, 38(7):60-68.
[2] 郭昊, 宋有涛. 水体富营养化控制技术研究综述[J]. 环境保护与循环经济, 2020, 40(4):19-21.
[3] 谢发之. 湖泊环境中营养元素(磷、铁)赋存及吸附机理研究[D]. 合肥:中国科学技术大学, 2012:169.
[4] 缪佳, 郑重, 丁春生, 等. 氯化铁改性活性氧化铝的制备和表征及其除磷效果研究[J]. 非金属矿, 2012, 35(3):61-63.
[5] 王舟. 绿色介孔FeOOH/γ-Al2O3复合球形颗粒的构筑及其吸附水溶液中有害物质的研究[D]. 镇江:江苏大学, 2018:131.
[6] 张多, 张盼月, 田帅, 等. 用于磷吸附的载铁(β-FeOOH)沸石制备及特性[J]. 环境工程学报, 2014, 8(2):499-504.
[7] Yang L, Hu C, Nie Y, et al. Surface acidity and reactivity ofβ-FeOOH/Al2O3 for pharmaceuticals degradation with ozone:In situ ATR-FTIR studies[J]. Applied Catalysis B: Environmental, 2010, 97(3-4):340-346.
[8] 杨晓晶, 贺红梅. 一种用于吸附磷酸根的吸附剂及吸附方法:200910093929.2[P].2010-04-07.
[9] 郑晓英, 李楠, 邱丽佳, 等. 城市废水处理厂二级处理出水中磷深度去除技术[J]. 环境工程学报, 2019, 13(8):1839-1846.
[10] Biswas B, Inoue K, Ghimire K, et al. Removal and recovery of phosphorus from water by means of adsorption onto orange waste gel loaded with zirconium[J]. 2008, 99(18):8685-8690.
[11] Wang D, Chen N, Yu Y, et al. Investigation on the adsorption of phosphorus by Fe-loaded ceramic adsorbent[J]. Journal of Colloid and Interface Science, 2016, 464:277-284.
[12] Fang L., Wu B., Chan J. K. M., et al. Lanthanum oxide nanorods for enhanced phosphate removal from sewage: A response surface methodology study[J]. Chemosphere, 2018, 192:209-216.
[13] 谢林花, 吴德礼, 张亚雷. 中国农村生活污水处理技术现状分析及评价[J]. 生态与农村环境学报, 2018, 34(10):865-870.
[14] 陈月芳, 樊荣, 刘哲, 等. 一体化农村生活污水处理装置研究进展[J]. 安徽农业科学, 2016, 44(9):84-88.
[15] 张曼雪, 邓玉, 倪福全. 农村生活污水处理技术研究进展[J]. 水处理技术, 2017, 43(6):5-10.
[16] 张军臣, 胡晓东, 石云峰, 等. 不同填料生物接触氧化工艺处理有机废水对比研究[J]. 给水排水, 2015, 41(3):136-139.
[17] 周恩红,刘德启.好氧—厌氧循环交替生物除磷影响因素的研究[J].环境科学管理,2008,33(5):38-41.
[18] Wang Y, Peng Y, Wang S, et al. Effect ofcarbon source and nitrate concentration on denitrifying phos-phorus removal by DPB sludge[J]. Journal of Environmentalscience, 2004,16(4):548-552.
[19] 许芝, 费庆志, 刘晓旭. 不同填料影响生物接触氧化工艺处理效果的研究[J]. 净水技术, 2007, 26(5):55-58.
[20] 马韩静. 污水深度处理化学强化除磷研究[D]. 济南:山东建筑大学, 2019.
[21] 彭飞燕, 周春何. 吸附法处理含磷废水的研究进展[J]. 安徽化工, 2017, 43(4):19-21.
[22] 关文学, 王三反, 李艳红.概述离子交换膜的发展及前景应用[J]. 应用化工, 2019, 48(4):888-892.
[23] Ata N, Yazicigil Z, Oztekin Y. The electrochemical investigation of salts partition with ion exchange membranes[J]. Journal of Hazardous Materials, 2008(160):154-160.
[24] 魏慧, 吴学昊, 管佳, 等.离子交换膜改性的研究现状及发展趋势[J]. 无机盐工业, 2016, 48(6):1-4.
[25] 陈志华, 周键, 王三反.离子交换膜选择透过机理的研究进展[J]. 应用化工, 2021, 50(5):1366-1371.
[26] 穆永信, 王三反, 王挺, 等. 离子交换膜改性的研究进展[J]. 膜科学与技术, 2013, 33(6):119-122.
[27] 王庚平, 吕建国. 膜分离技术在石油化工废水深度处理中的应用[J]. 甘肃科技, 2007, 23(2):84-87.
[28] 陈婧珍. 离子交换膜的改性技术及其研究进展[J]. 绿色科技, 2019, 22:144-146.
[29] 麦正军, 赵志伟, 彭伟, 等. 苦咸水淡化工艺的应用研究进展[J]. 兵器装备工程学报, 2017, 38(1):174-177.
[30] 李茹, 张宇, 李茜, 等. 远程氩等离子体对聚偏氟乙烯超滤膜的表面改性[J]. 高分子材料科学与工程, 2021, 37(6):17-26.
[31] Konruang S, Chittrakarn T, Sirijarukul S. Surface modification of asymmetric polysulf one membrane by UV irradiation[J]. Journal Teknologi, 2014, 70(2):1-20.
[32] Mulyati S, Takagi R, Fujii A, et al. Improvement of the antifouling potential of an anionexchange membrane by surface modification with a polyelectrolyte for anelectrodialysis process[J]. Journal of Membrane Science, 2012(417):137-143.
[33] 杨金涛, 王章忠, 卜小海, 等. 离子交换膜的改性研究进展[J]. 膜科学与技术, 2019, 39(3):150-156.
[34] 李根, 李国宇, 李培礼, 等. 纳米SiO2的表面改性及SiO2/WEPN复合材料的制备与性能研究[J]. 现代化工, 2021, 41(9):173-177, 184.
[35] 马雷. PTFE膜的表面化学改性及其生物相容性的研究[D]. 郑州:郑州大学, 2020:8-9.
[36] Ersoz M, Kara H. Cobalt (Ⅱ) and nickel (Ⅱ) transfer through charged polysulfonated cation exchange membranes[J]. Journal of Colloid and Interface Science, 2000, 232 (2) :344-349.
[37] Kalis E J, Weng L, Temminghoff E J, et al. Measuring free metal ion concentrations in multicomponent slolutions using the Donnan membrane technique[J]. Analytical Chemistry, 2007, 79 (4) :1555-1563.
[38] Shi B, Li Z, Su X. Hydrophilic modification of poly (vi-nylidene fluoride) ultrafiltration membranes by surface UV photo-grafting with N, N-methylene-bisacrylamide asmonomer and Ce (IV) as initiator[J]. Journal of Water Reuse and Desalination, 2015(89):21-66.
[39] Han S, Wang H, Sun Z, et al. Surface modification of PS microtiter plate with chitosan oligosaccharides by 60 Co irradiation[J]. Carbohydrate Polymers, 2017(176):135-139.
[40] 肖新乐. 离子交换膜界面改性及应用性能研究[D]. 合肥:中国科学技术大学, 2020:3-25.
[41] 吕昂, 张俐娜. 纤维素溶剂研究进展[J]. 高分子学报, 2007(10):937-944.
[42] Jiang Z W, Lu A, Zhou J P, et al. Interaction between-OH groups of Methylcellulose and solvent in NaOH/urea aqueous system at low temperature[J]. Cellulose, 2012, 19:671-678.
[43] 金虎, 田敏, 赵文钊, 等. 化学强化除磷对污水厂A2/O工艺生物除磷的影响[J]. 中国给水排水, 2019, 35(23):1-5.
[44] 李翠珍, 胡开堂, 余志伟. 海绵状纤维素制品的研究进展[J]. 林产化学与工业, 2003(3):93-96.
[45] Xiong B, Zhao P P, Hu K, et al. Dissolution of cellulose in aqueous NaOH/urea solution:role of urea[J]. Cellulose, 2014, 21:1183-1192.
[46] 吴志红, 昌康琪, 王栋, 等. 环境友好高吸水纤维素海绵的制备及影响工艺[J]. 高分子材料科学与工程, 2016, 32(1):184-190.
[47] 刘洁, 刘志明. 成孔剂Na2SO4的用量对纤维素海绵性能的影响[J]. 纤维素科学与技术, 2017, 25(4):31-35.
[48] Ye D, Zhong Z, Xu H, et al. Construction of cellulose nanosilver sponge materials and their antibacterial activities for infected wounds healing[J]. Cellulose, 2016, 23(1):749-763.
[49] 刘晓辉. NMMO溶剂法纤维素海绵的制备[D]. 上海:东华大学, 2013.
[50] 刘晓辉, 杨海茹, 张慧慧, 等. NMMO溶剂法纤维素海绵的制备及性能研究——成孔剂用量的影响[J]. 合成技术及应用, 2014, 29(2):1-13.
[51] 杨海茹. 离子液体法纤维素海绵的研制[D]. 上海:东华大学, 2013.
[52] 杨海茹, 刘晓辉, 张慧慧, 等. 离子液体法纤维素海绵的制备——成孔剂种类的影响[J]. 纤维素科学与技术, 2013,21(1):51-55,69.
[53] 张慧慧, 夏磊, 蔡涛, 等. 离子液体法纤维素海绵的制备——(I)成孔剂用量的影响[J]. 高分子材料科学与工程, 2010, 26(12):114-117.
[54] 张慧慧, 夏磊, 蔡涛, 等. 离子液体法纤维素海绵的制备——(II)纤维素含量的影响[J]. 高分子材料科学与工程, 2011, 27(4):99-101, 105.
[55] Bi G. B., Luo Y., Ding J. J., et al. Environmental performance analysis of Chinese industry from a slacks-based perspective [J]. Annals of Operations Research 2015, 228(1):65-80.
[56] Lyu F, Wang C, Zhu P, et al. Characterization of chitosan microparticles reinforced cellulose biocomposite sponges regenerated from ionic liquid[J]. Cellulose, 2014, 21(6):4405-4418.
[57] Gao C, Wan Y, Yang C, et al. Preparation and characterization of bacterial cellulose sponge with hierarchical pore structure as tissue engineering scaffold[J]. Journal of Porous Materials, 2011, 18(2):139-145.
[58] Li Y, Wang B, Sui X, et al. Facile synthesis of microfibrillated cellulose organosilicon polydopamine composite sponges with flame retardant properties[J]. Cellulose, 2017, 24(9):3815-3823.
[59] Zhao L, Li L, Wang Y, et al. Preparation and characterization of thermo-and p H dual-responsive 3Dcellulose-based aerogel for oil water separation[J]. Applied Physics A, 2018, 124(1):9.
[60] 哈丽丹·买买提, 布佐热·克比尔. 纤维素氨基甲酸酯法制备纤维素海绵[J]. 化工学报, 2012, 63(5):1637-1642.
[61] 王通文, 王新龙, 王佳辉. 红麻增强纤维素海绵研究[J]. 化工新型材料, 2014, 42(10):167-170.
[62] Li X M, Tang Y R, Xuan Z X, et al. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd 2+from aqueous solution[J]. Separation and Purification Technology, 2007, 55(1):69-75.
[63] Batzias F A, Sidiras D K. Simulation of dye adsorption by beech sawdust as affected by pH[J]. Journal of Hazardous Materials, 2007, 141(3):668-679.
[64] 乔楠,于大禹,张金榜,等.一种孔雀石绿染料废水的处理方法:中国,CN201010290607.X[P].2011-11-16.
[65] 张秀菊,陈文彬,林志丹,等.细菌纤维素负载TiO 2复合材料的制备及其在印染废水处理方面的应用[J].化工新型材料,2010,38(10):100-103
[66] 张佳珺,林春香,詹怀宇,等.球形纤维素吸附剂对亚甲基蓝的吸附热力学研究[J].造纸科学与技术,2010,29(4):76-80.
[67] Bouzaida I, Rammah M B. Adsorption of acid dyes on treated cotton in a continuous system[J]. Materials Science and Engineering, 2002, 21(1/2):151-155.
[68] 赵磊,姜雪,武素丽,等.阳离子纤维对活性染料X-BR吸解行为研究[J].水处理技术,2010,36(1):36-39.
[69] Garg V K, Gupta R, Bala Yadav A, et al. Dye removal from aqueous solution by adsorption on treated sawdust[J]. Bioresource Technology, 2003, 89(2):121-124.
[70] 陈显利,田野,张浩,等.纳米磁种材料表面改性及其水吸附性能[J].科技导报,2011,29(3):57-61.
[71] Boufi S, Belgacem M N. Modified cellulose fibres for adsorption of dissolved organic solutes[J]. Cellulose, 2006, 13(1):81-94.
[72] 万军民,胡智文,陈文兴,等.负载β-环糊精纤维素纤维在污水处理中的应用研究[J].环境污染与防治,2004,26(1):57-59.
[73] 林晓艳,朱恒,罗学刚.用于吸附TNT的改性羟乙基纤维素吸附材料的制备方法:中国,CN201010177325.9[P].2010-09-08.
[74] 钱晓荣,王连军,邵荣,等.阳离子木屑纤维素的制备及其对水中2,4-二氯苯酚的吸附性能[J].过程工程学报,2009,9(6):1074-1079.
[75] 魏桃员,张素琴,邵林广,等.一株纤维素降解细菌的分离及特性研究[J].环境科学与技术,2004,27(5):1-2,39.
[76] 姜曼,吴环,李建法,等.纤维素及其复合凝胶对除草剂的控制释放作用[J].现代农药,2009,8(4):19-22.
[77] Yuan J. H., Xu R. K., Hong Z. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresour Technol, 2011, 102(3): 3488-3497.
[78] Solovchenko A., Verschoor A. M., Jablonowski N. D., et al. Phosphorus from wastewater to crops: An alternative path involving microalgae[J]. Biotechnology advances, 2016, 34(5): 550-564.
[79] F W Gilcreas. APHA Standard Methods for the Examination of Waste and Waste Water[J]. American Journal of Public Health & the Nations Health, 1998, 56(3):387.
[80] 师文钊, 崔杉杉, 刘瑾姝, 等. 纤维素基多孔相变复合材料研究[J].纺织科技进展, 2021(3):6-8, 13.
[81] 宋洁, 柯如媛, 牛育华, 等. KHA改性不同纤维素型多孔吸水海绵基质的制备及性能研究[J]. 应用化工, 2020, 49(6):1344-1347, 1353.
[82] Houben D., Evrard L., Sonnet P. Mobility bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar[J]. Chemosphere, 2013, 92(11): 1450-1457.
[83] 周振, 胡大龙, 乔卫敏, 等. 聚合氯化铝去除污泥水中磷的工艺优化[J]. 环境科学, 2014, 35(6):2249-2255.
[84] 季斌, 秦慧, 陈威, 等. 铁盐应用于污水协同除磷研究进展[J]. 水处理技术, 2018, 44(2):11-14.
[85] WANG H J, DONG W Y, LI T, et al. A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: examination on pollutants removal and clogging development[J]. Bioresource Technology, 2015, 189:44-52.
[86] Hosseini S M, Nemati M, Jeddi F, et al. Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: mono / bivalent ionic transport property in desalination[J]. Desalination, 2015(359):167-175.
[87] Mulyati S, Takagi R, Fujii A, et al. Improvement of the antifouling potential of an anionexchange membrane by surface modification with a polyelectrolyte for anelectrodialysis process[J]. Journal of Membrane Science, 2012(417):137-143.
[88] 李玉娇. 阴离子交换膜表面氧化石墨烯固定化及抗污染性能研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2021:16-17.
[89] 吴仲孝, 孟扬, 苏娟娟, 等. 氮化硼表面改性及其对PVC膜耐碱性能的影响[J]. 浙江理工大学学报(自然科学版), 2021, 45(6):736-743.
[90] 刘侠, 温俊峰, 薛帆, 等. 改性桃核壳对水中刚果红的吸附研究[J]. 化学与生物工程, 2021, 38(05):39-42+45.
[91] 李博, 晏雅婧, 张金瑶, 等. 乙二胺改性木屑对As(V)的吸附研究[J]. 离子交换与吸附, 2018, (01):29-39.
[92] He H M, Sun Q, Gao W Y, et al. A stable metal-organic framework featuring a local buffer environment for carbon dioxide fixation[J]. Angewandte Chemie International Edition, 2018, 57(17):4657-4662.
[93] Kupgan G, Abbott L J, Hart K E, et al. Modeling amorphous microporous polymers for CO2capture and separations[J]. Chemical Reviews, 2018, 118(11):5488-5538.
[94] Rehman A, Park S J. Comparative study of activation methods to design nitrogen-doped ultra-microporous carbons as efficient contenders for CO2capture[J]. Chemical Engineering Journal, 2018, 352:539-548.
[95] Sun L B, Li A G, Liu X D, et al. Facile fabrication of costeffective porous polymer networks for highly selective CO2capture[J]. Journal of Materials Chemistry A, 2015, 3(7):3252-3256.
[96] 沈文龙, 李嘉旭, 杨颖, 等. 基于沸石ZSM-5的CH4/N2/CO2二元体系吸附平衡[J]. 化工学报, 2014, 65(9):3490-3498.
[97] Coudert F X, Kohen D. Molecular insight into CO2"Trapdoor"adsorption in zeolite Na-RHO[J]. Chemistry of Materials, 2017, 29(7):2724-2730.
[98] Mafra L, Čendak T, Schneider S, et al. Structure of chemisorbed CO2 species in amine-functionalized mesoporous silicas studied by solid-state NMR and computer modeling[J]. Journal of the American Chemical Society, 2017, 139(1):389-408.
[99] 靖宇, 韦力, 王运东, 等. 混合胺改性SBA-15的二氧化碳吸附特性[J].化工学报, 2014, 65(1):328-336.
[100] 周建海, 赵会玲, 胡军, 等. 氨基修饰微孔/介孔复合材AM-5A-MCM-41对
CO2吸附分离的分子模拟[J]. 化工学报, 2014, 65(5):1680-1687.
[101] Chernikova V, Yassine O, Shekhah O, et al. Highly sensitive and selective SO2MOF sensor: the integration of MFM-300 MOF as a sensitive layer on a capacitive interdigitated electrode[J]. Journal of Materials Chemistry A,2018, 6(14):5550-5554.
[102] 王中华, 曹健, 曹雯慧. 乙二胺改性花生壳对刚果红的吸附性能[J]. 江苏农业科学, 2014, (04):320-322.
[103] 许醒, 高悦, 高宝玉, 等. 麦草制吸附剂对水体中不同阴离子的吸附性能[J]. 中国科学:化学, 2010, (10):1558-1563.
[104] 屈杰. 改性生物炭对水体中磷酸盐的吸附特征及其资源化再利用[C]. 山东农业大学, 2021.
[105] 华露露. 改性生物质炭对磷酸盐的吸附机理研究[J]. 安徽建筑, 2021, 28(05):165-167.
[106] 车林轩, 程伟钊, 韦志鹏. 污水除磷技术及影响因素的研究进展[J]. 应用化工, 2022, 51(06):1811-1816+1824.

开放日期:

 2022-12-08    

无标题文档